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(a) (b)
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Figure 8: Binary images generated by applying different thresholding algorithms to frame difference image in Figure 6(d); (a) Fixed threshold
= 10; (b) Fixed threshold = 30; (c) Adaptive thresholding by using mean-C with a 5 × 5 window and C is set at 5.0; (d) Gaussian adaptive
thresholding with a 5× 5 window and C is set at 10.0.

without knowledge about the source of degradation. Many
different, often elementary and heuristic methods are used
to improve images in some sense. A literature survey is given
in [26]. Advanced image enhancement algorithms employ
spatial filter, neural network, cellular neural network, and
fuzzy filter. However, these methods are computationally
heavy. They are not suitable for real-time target detection.
In our algorithm, we employ dynamic Gabor filter.

3.2.2. Dynamic Gabor Filter. Gabor function has been rec-
ognized as a very useful tool in computer vision and image
processing, especially for texture analysis, due to its optimal
localization properties in both spatial and frequency domain.
There are many publications on its applications since Gabor
proposed the 1D Gabor function [27]. The family of 2D
Gabor filters was originally presented by Daugman [28]
as a framework for understanding the orientation-selective
and spatial–frequency-selective receptive field properties of
neurons in the brain’s visual cortex, and then was further
mathematically elaborated [29]. The 2D Gabor function is
a harmonic oscillator, composed of a sinusoidal plane wave
of a particular frequency and orientation, within a Gaus-
sian envelope. Gabor wavelets are hierarchically arranged,
Gaussian-modulated sinusoids. The Gabor-wavelet trans-
form of a two-dimensional visual field generates a four-

dimensional field: two of the dimensions are spatial, the
other two represent spatial frequency and orientation. A
Gabor wavelet is defined as

ψμ,ν(z) =
∥∥∥kμ,ν

∥∥∥2

σ2
e−‖kμ,ν‖2×‖z‖2/2σ2

[
eikμ,νz − e−σ2/2

]
, (18)

where z = (x, y) is the point with the horizontal coordinate x
and the vertical coordinate y. The parameters μ and ν define
the orientation and scale of the Gabor kernel, ‖·‖ denotes the
norm operator, and σ is related to the standard derivation of
the Gaussian window in the kernel and determines the ratio
of the Gaussian window width to the wavelength. The wave
vector kμ,ν is defined as follows

kμ,ν = kνe
iφμ , (19)

where kν = kmax/ f ν and φμ = πμ/8, kmax the maximum
frequency, and f ν is the spatial frequency between kernels in
frequency domain.

The Gabor kernels in (18) are all self-similar since they
can be generated from one kernel (a mother wavelet) by
dilation and rotation via the wave vector kμ,ν. Each kernel is a
product of a Gaussian envelope and a complex plane wave.
The first term eikμ,νz in the square bracket in (18) controls
the oscillatory part of the kernel and the second term e−σ

2/2
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Figure 9: Gabor kernels and Gabor filter responses. (a) Input image; (b) 4 Gabor kernels with ν = 3 and σ = 2π; (c), (d), (e), and (f) Gabor
filter response with a Gabor kernel at orientation μ = 0, π/4, π/2, and 3π/4, respectively.

compensates for the DC value, thus making the kernel DC-
free, that is, the integral

∫
ψμ,ν(z)d2z vanishes. Therefore, it is

not necessary to consider the DC effect, when the parameter
σ is large enough.

The Gabor filtering of an image I is the convolution of
the image I with a Gabor kernel as defined by (18). The
convolution image is defined as

Oμ,ν(z) = I(z)∗ ψμ,ν(z). (20)

The response Oμ,ν(z) to the Gabor kernel ψμ,ν(z) is a
complex function with a real part Re{Oμ,ν(z)} and an imagi-
nary part Im{Oμ,ν(z)}. The magnitude response ‖Oμ,ν(z)‖ is

expressed as

∥∥∥Oμ,ν(z)
∥∥∥ =

√
Re

{
Oμ,ν(z)

}2
+ Im

{
Oμ,ν(z)

}2
. (21)

Figure 9(a) shows a synthesized binary image.
Figure 9(b) shows four Gabor kernels with ν = 3 and σ = 2π,
at orientation μ = 0, π/4, π/2, and 3π/4, respectively. The
Gabor filter responses are shown in (c), (d), (e), and (f),
corresponding to the Gabor kernel at orientation 0, π/4, π/2,
and 3π/4, accordingly. Here, the interesting result is shown
in (c), where the disconnected blobs in (a) are merged into
one blob after Gabor filtering. The similar phenomenon
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(a) (b)

Figure 10: (a) Dynamic Gabor kernel determined by the optical
flow in Figure 6(c); (b) Gabor filter response for the frame
difference image in Figure 6(d).

happens in target detection by frame differencing technique.
If the interval between two consecutive frames is too large
or if the targets move too fast, the moving targets appear
as separate blobs in frame difference image. By carefully
choosing the orientation of Gabor filter, separated blobs can
be detected as a connected blob from Gabor response. Our
algorithm employs this experiment result.

In our algorithm, we fix the following parameters, kmax =
π/2, σ = 2π, f = √

2, and ν = 3. The orientation μ is
dynamically changed according to optical flows from inliers.
We call it dynamic Gabor filter. The orientation μ is defined
as

μ = 1
Kin

Kin∑

i=1

θ
(
�Ft′ti

)
, (22)

where θ(�Ft′ti ) is the orientation of the optical flow �Ft′ti ∈ Ft
′t

in ,
and is given by

θ
(
�Ft′ ti

)
= arctan

yt
′
i − yti
xt

′
i − xti

. (23)

Figure 10(a) shows the dynamic Gabor kernel deter-
mined by the optical flows in Ft

′t
in as shown in Figure 6(c).

Figure 10(b) shows the Gabor filter response by performing
convolution for the frame difference image in Figure 6(d)
and the dynamic Gabor kernel in Figure 10(a).

3.3. Specular Highlights Detection. As can be seen in
Figure 10(b), the image changes appear as high intensity in
the dynamic Gabor filter response. They look like spotlights.
The center of the spotlight is brightest, and the brightness on
the circular points around the center becomes dim gradually
when the circle becomes larger. We call these high intensity
specular highlights. Therefore, the target detection problem
becomes the specular highlight detection problem. Because
the intensity of highlights changes for the moving targets
(some specular highlights are dimmer than others), the
thresholding algorithms cannot detect all specular highlights

R3
R2

R1

C0

C1

C2

C3

π/6

Figure 11: Specular highlight detector.

successfully. Here, we employ the specular highlight detector
as shown in Figure 11. TheC0 is the pixel under examination.
This detector compares the intensity at C0 and the intensity
of pixels on the circular circles C1, C2, and C3, with radius R1,
R2, and R3, respectively. C1, C2, and C3 are sampled at π/6
interval, hence the detector will only compare the intensity
at C0 and 12 sample points, C j ,1, C j ,2, . . . ,C j ,12, from each
circular circle. Let G(z) denote the dynamic Gabor filter
response at z, the discrimination of specular highlights is as
follows

C0 is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a specular highlight,

iff G(C0) ≥ G
(
C1,i

)
and G

(
Cj,i

)
≥ G

(
Cj+1,i

)
,

not a specular highlight,

otherwise,
(24)

where j = 1, 2, and i = 1, 2, . . . , 12.
The specular highlight points detected from the dynamic

Gabor filter response in Figure 10(b) are shown in
Figure 12(a) by red dots. Note that red dots form several red
regions in Figure 12(a). This is caused by the loose condition,
“ if and only if G(C0) ≥ G(C1,i) and G(Cj,i) ≥ G(Cj+1,i)”, in
(24). The loose condition is chosen in attempt not to miss the
possible specular highlights. These specular highlight points
are denoted by Ph = {ph1, . . . , phKh}, whereKh is the number of
specular highlight points. In our algorithm, it is convenient
to use the center and radius to represent the location and
size of the specular highlights. To obtain the location and
the size of specular highlights, {ph1 , . . . , phKh} are clustered. Let
Hi(c, r) denote ith specular highlight, where r is the radius, c
the center, and c contains x-coordinate, xc, and y-coordinate,
yc.

The specular highlights generated above need to be
clustered to determine the precise center of the specular
spot. Among the clustering algorithms, k-NN (k nearest
neighbor) algorithm needs a user predetermined constant
k the number of the clusters [30]. It is not applicable to
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(a) (b)

Figure 12: (a) Specular highlight points; (b) Specular highlight clustering.

our problem. On the other hand, the mean shift algorithm
is a nonparametric clustering technique which does not
require prior knowledge of the number of clusters, and
does not constrain the shape of the clusters [31]. However,
the computation is complicated. Similarly, (support vector
machine) SVM is another powerful clustering algorithm
[32], but it is computationally heavy. In this work, Hi(c, r)
is obtained according to the following algorithm.

Specular Highlight Point Clustering Algorithm. The summary
of this algorithm is as follows. For a specular highlight
point, create a new cluster and consider this point is the
center of the newly created cluster. Then, check whether
there are other specular highlight points that are close to
the current one, according to the predetermined threshold
Th. If yes, those points are also added to the newly created
cluster, and the center of the cluster is updated after adding
a specular highlight point to the newly created cluster. This
process is repeated for all specular highlight points. After
this processing, it forms a cluster. Then it chooses the next
specular highlight point that is not clustered so far, and
repeats the above processing. This processing is repeated
until all specular highlight points are clustered. The details
are given below.

(1) For phj ∈ Ph, it is considered as the center of Hi(c, r)

and it is removed from Ph, added to Hi(c, r), and set
c = phj and Mi = 1, where Mi is the number of the
specular highlight points in Hi(c, r), and both i and j
begin from 0, and Hi(c, r) is an empty set initially.

(2) For phk ∈ Ph(k /= j), if ‖phk − c‖ ≤ Th, phk is removed
from Ph, added to Hi(c, r), and update Mi and the
center c according to

Mi =Mi + 1, xc = 1
Mi

Mi∑

m=1

xm,

yc = 1
Mi

Mi∑

m=1

ym,

(25)

where Th is a predetermined threshold value,
(xm, ym) ∈ Hi(c, r), (xc, yc) is the coordinates of the

center c, and ‖phk − c‖ means the Euclidean distance
between the specular highlight point, phk , and the
center c.

(3) Repeat step (2) for all specular highlight points in Ph.
When this step finishes, Hi(c, r) is obtained, and the
radius r is given by

r = max
∥∥∥phk − c

∥∥∥, (26)

where k = 1, 2, . . . ,Mi,

(4) Update i, and repeat steps (1) to (3) for the left
specular highlight points in Ph to search for the next
cluster.

(5) Repeat steps (1) to (4) until Ph becomes an empty set.

Let HS = {H1(c, r),H2(c, r), . . . ,HKs(c, r)} represent the
detected specular highlights, where Ks is the number of
specular highlights. Figure 12(b) shows the clustering result
for the specular highlight points in Figure 12(a), where each
cluster means a specular highlight. The specular highlights
are numbered from 0 to 4, and the centers are marked by a
small “x”.

3.4. Moving Target Localization

3.4.1. Outlier Clustering. Because outliers are caused by the
moving targets, they can be used for moving target localiza-
tion. Here we employ the observation result that if outliers
belong to the same moving targets, they are located closely,
in optical flow field. Therefore, the outliers are clustered
first. The clustering algorithm for outliers is the same one
as described in Section 3.3, but with different clustering
threshold To. Let Cout = {C1(c, r),C2(c, r), . . . ,CKo(c, r)}
represent the outliers clusters, where Ko is the number of
the clusters. The outlier clustering result for the outliers
detected from input images in Figures 6(a) and 6(b) is shown
in Figure 6(c) by the purple circles, and the center of each
cluster is marked by small “+” in purple. If all outliers are
separated correctly, we can say that each cluster corresponds
to one or multiple targets. However, this assumption is not
always correct. Some moving target may not generate outliers
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because outlier separation algorithm may fail or because
the displacement of moving target is too small. This case is
indicated in Figure 6(c) by the dotted circle in red, where
a moving target exists. In the following, we combine both
outlier clustering result and specular highlight detection
result for moving target localization.

3.4.2. Moving Target Localization Based on Outlier Clustering
and Specular Highlights. The discrimination rule for moving
target localization based on outlier clustering and specular
highlight detection is as follows. For a specular highlight
Hi(c, r) ∈ HS, if its center lies in a outlier cluster Ck(c, r) ∈
Cout (i = 1, . . . ,Ks, k = 1, . . . ,Ko), it is considered as a
target. If its center does not lie in any outlier cluster, the
dynamic Gaussian detector is employed, which is described
in Section 3.4.3. According to this rule, the specular highlight
numbers 0, 1, 3, and 4 in Figure 12(b) are identified as
moving targets, and are marked by red circles in Figure 13.
The localized targets are represented by its center and radius
which is set at To (the thresholding for outliers clustering).

3.4.3. Moving Target Localization Based on Dynamic Gaussian
Detector. As shown in Figure 12(b), a specular highlight
is similar to a two-dimensional (2-D) Gaussian distribu-
tion. The moving target localization method described in
Section 3.4.2 may fail if the feature point detector, described
in Section 3.1.1, does not detect the enough outliers belong-
ing to a moving target. To make the moving target local-
ization robust, we further employ 2-D Gaussian function
as a target detector to conduct the secondary moving
target localization. (Correspondingly, the method used in
Section 3.4.2 is called primary moving target localization.) A
general 2-D Gaussian function is given by

G
(
x, y

) = Ae−[a(x−x0)2+b(x−x0)(y−y0)+c(y−y0)2], (27)

where

a =
(

cos θ
σx

)2

+

(
sin θ
σy

)2

,

b = − sin 2θ
σ2
x

+
sin 2θ
σ2
y

,

c =
(

sin θ
σx

)2

+

(
cos θ
σy

)2

(28)

and the coefficient A is the amplitude, (x0, y0) is the center,
σx, σy are the x and y spreads of the Gaussian function, and
θ is the orientation. Figure 14 shows 2D Gaussian function
distribution at orientation θ = 0, π/6, π/3, π/2, 2π/3, 5π/6,
respectively.

In our algorithm, the detector compares the specular
highlight with 2D Gaussian kernel generated according to
(27) and (28), and calculates the similarity. The orientation
θ of 2-D Gaussian function is determined by the orientation
of the specular highlight. Here we call it dynamic Gaussian
detector. This detector algorithm is as follows.

Figure 13: Target localization result.

Figure 14: Gaussian kernel at orientation θ = 0, π/6, π/3, π/2,
2π/3, and 5π/6, respectively.

Target Localization Algorithm based on Dynamic Gaussian
Detector. (1) For Hi(c, r) ∈ HS which does not lie in any
outlier cluster in Cout, extract W × W image Isub centered
at c for this specular highlight, where W is determined by r,
and currently is set at 2× 1.2× r + 1.

(2) Isub is binarized by fixed threshold, 0.7vmax, where
vmax is the maximal intensity in Isub.

(3) The first principal axis of the binarized image Isub is
calculated according to

α = 1
2

arctan
2m11

m20 −m02
, (29)

where

mpq =
W∑

x=1

W∑

y=1

Isub
(
x, y

)
(x − xc)p

(
y − yc

)q

(
p, q = 1, 1; 2, 0; 0, 2

)
(30)

is the moment around the centroid (xc, yc). xc and yc are
given by

xc = m10

m00
, yc = m01

m00
, (31)

where

mp′q′ =
W∑

x=1

W∑

y=1

Isub
(
x, y

)
xp

′
yq

′ (
p′, q′ = 0, 0; 1, 0; 0, 12

)
.

(32)

Note thatmpq andmp′q′ are the moment of order (p + q)
for the image Isub, around the center c and origin, respec-
tively. Equations (30) and (31) are the digital expression
of the moment. Generally, for a 2D continuous function
f (x, y) the moment (sometimes called “raw moment”) of
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Table 2: Correct detection rate, miss detection rate, and hit rate for the 4 datasets.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Total number of targets 381 266 287 297

Detected targets 326 221 249 270

Missed targets 55 45 38 27

Correct detection rate 85.6% 83.1% 86.8% 90.90%

Miss detection rate 14.4% 16.9% 13.2% 9.10%

Hit rate 85.9% 81.3% 70.7% 76.60%

(a) (b) (c)

Figure 15: (a) A specular highlight; (b) Principal axis for the
specular highlight in (a); (c) Generated Gaussian pattern.

order (p + q) is defined by mpq =
∫∫∞
−∞x

p yq f (x, y)dxdy,
where p, q = 0, 1, 2, . . . .

(4) α is used as the orientation to generate Gaussian
kernel IG, according to (27), where the Gaussian pattern size
is W .

(5) The similarity between Isub and IG is calculated
according to (12) [33], which is rewritten as

s =
W−1∑

k=0

W−1∑

k=0

[
Isub(k, l)− I sub

]
×
[
IG(k, l)− IG

]

W2
√
σ(Isub)× σ(IG)

. (33)

If s ≥TG, Hi(c, r) is considered as a target, where TG is the
predetermined threshold.

(6) Repeat steps (1) to (5) for all specular highlights in
HS, which do not lie in any cluster in Cout.

Figure 15(a) shows the image Isub for the specular
highlight number 2 in Figure 12(b), which does not lie in
any outlier cluster in Figure 6(c). Figure 15(b) shows the
binarized specular highlight and the first principal axis by
a long black line segment, and the second principal axis by
short, and (c) shows the generated Gaussian kernel according
to (27).

4. Experiment Results

The entire algorithm described in Section 3 is implemented
by using C++ and OpenCV on windows platform. The input
image size is 320 × 256, Δ is set at 2, the outlier clustering
threshold To at H/6 (H is the image height), the specular
highlight point clustering threshold Th at 2To/3, the similar-
ity threshold TG at 0.93, and A, σx, and σy are set at 1, 25.0,
and 15.0, respectively. The IR video data from the VIVID
datasets provided by the Air Force Research Laboratory is
used. Figures 16, 17, and 18 show some experiment results.
Figures 16(a) and 16(b) show two consecutive input images,
(c) shows the detected optical flows (marked by red line

segments) and outlier clustering (marked by purple circles),
(d) the generated frame difference, (e) the detected specular
highlights, and (f) the detected moving targets marked by red
circles.

Figure 17 shows the target detection results at frame
29, 32, 37, 69, 78, and 82, for an input image sequence.
Green circles mark the ground truth target positions, labeled
manually, red circles means targets detected based on outlier
clustering and specular highlights, and purple circles marks
the output of the dynamic Gaussian detector. In frame 32,
the target number 3 in (a) is missed. In frame 37, the target
number 3 in (a) is also missed, and the dynamic Gaussian
detector mistakenly detected a specular highlight (marked
by purple circle) caused by tree leaves. In frame 69, the
system also mistakenly detected a specular highlight caused
by tree leaves. However, the system detected a moving target
(number 2 in (d)) that was not marked by the human
operator. In Frame 78, the system also detected a moving
target (number 2 in (e)) which is the ground truth target
but is not marked by the human operator. This is a human
operator’s mistake. In frame 81, the system mistakenly
detected a target (number 0 in (f)) and lost one target.

Figure 18 shows target detection results at frame 44,
50, 53, 73, 81, and 84 for another input image sequence.
Green circles mark the ground truth target positions, labeled
manually, red circles means targets detected based on outlier
clustering and specular highlights, and purple circles marks
the output of the dynamic Gaussian detector. In frame 44, the
dynamic Gaussian detector identified two targets, number 2
and 3, in (a). However, the target number 3 is a false target.
In frame 53, the target in the middle was detected as two sep-
arated targets. In frame 81 and 84, the system lost one target.

5. Performance Analysis

To evaluate the performance of this algorithm, we selected
four image sequences with the significant background as
the test data. Each sequence contains 100 frames, and each
frame contains two to four moving targets. The ground truth
targets are labelled manually. The total number of targets in
these 4 datasets is 1231. We examined the correct detection
rate, hit rate, and processing time. The hit rate is defined
as the ratio for the intersected area of detected target and
ground truth target and the area of the ground truth target.
The experiments are conducted on a Windows Vista machine
mounted with a 2.33 GHz Intel Core 2 CPU and 2 GB main
memory. The total average correct detection rate is 86.6%,
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(a) (b)

(c) (d)

(e) (f)

Figure 16: (a) and (b) Two input images; (c) Detected optical flows (marked by red line segments) and outliers clustering (marked by purple
circles); (d) Frame difference; (e) Detected specular highlights; (f) Detected moving targets marked by red circles.

and hit rate is 78.6%, respectively. The detail detection
results are shown in Table 2. The average processing time
is 581 ms/frame. The detailed processing time are shown in
Figure 19.

6. Conclusions and Future Works

This paper described a method for multiple moving target
detection from airborne IR imagery. It consists of motion
compensation, dynamic Gabor filtering, specular highlights
detection, and target localization. In motion compensation,

the optical flows for two consecutive images are detected
from the feature points. The feature points are separated into
inliers and outliers, accordingly, the optical flows are also
separated into two classes, optical flows belonging to inliers
and optical flows belonging to outliers. The optical flows
belonging to inliers are used to calculate the global motion
model parameters. Here, the Affine model is employed. After
the motion model estimation, the frame difference image is
generated. Because of difficulties to detect the targets from
the frame difference image, we introduce the dynamic Gabor
filter. In this step, we use the orientation of the optical



EURASIP Journal on Image and Video Processing 19

(a) Frame 29 (b) Frame 32

(c) Frame 37 (d) Frame 69

(e) Frame 78 (f) Frame 82

Figure 17: Target detection results in frame 29, 32, 37, 69, 78, and 82. Green circles mark the ground truth target positions, labeled manually.
Red circles means targets detected based on outliers clustering and specular highlights. Purple circles mark the output of the dynamic
Gaussian detector.

flows belonging to inliers to control the orientation of the
Gabor filter. We call it dynamic Gabor filter. This is the first
contribution of this paper. After the dynamic Gabor filtering,
the image changes appear as high intensity in dynamic
Gabor filter response. We call these high intensity specular
highlights. In specular highlight detection, we use a simple
but efficient detector to extract the specular highlight points.
These specular highlight points are clustered to indentify
the specular highlight center and its size. In the last step,
it employs the outlier clustering and specular highlights to

localize the targets. If a specular highlight lies in an outlier
cluster, it is considered as a target. If a specular highlight
does not lie in any outlier cluster, it employs the Gaussian
detector to identify the target. The orientation of the specular
highlight is used to control the orientation of Gaussian
kernel. We call this detector dynamic Gaussian detector. This
is the second contribution of this paper.

This algorithm was implemented in C++ and OpenCV.
We tested the algorithm by using the airborne IR videos
from AFRL VIVID datasets. The correct detection rate is
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(a) Frame 44 (b) Frame 50

(c) Frame 53 (d) Frame 73

(e) Frame 81 (f) Frame 84

Figure 18: Target detection results in frame 44, 50, 53, 73, 81, and 84. Green circles mark the ground truth target positions, labeled manually.
Red circles means targets detected based on outliers clustering and specular highlights. Purple circles mark the output of the dynamic
Gaussian detector.

86.6%, and the hit rate for the correct detection is 78.6%.
The processing rate is 581 ms/frame, that is, approximate
2 frames per second. This speed meets the requirement
for many real-time target detection and tracking systems.
As seen in Figures 17 and 18, in some cases the system
fail to detect the targets or it mistakenly detects the image
changes caused by the background significant features such
as tree leaves or building corners. This can be improved by
two efforts. The first one is to improve the inliers/outliers
separation algorithm so that it maximally recognizes the

feature points belonging to the background as the inliers. The
second effort is to improve the dynamic Gaussian detector.
Currently, the threshold for the dynamic Gaussian detector
is set at a high value. This rejects some specular highlights
to be recognized as targets. However, if this threshold is set
at a low value, it will bring about false detection. And σx
and σy in dynamic Gaussian detector are fixed. These can
be dynamically changed according to the detection results
of the dynamic Gabor filter. As shown in Section 3.1.1, six
feature point detectors have been evaluated by employing
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Figure 19: Processing time for multiple moving target detection.

the synthesized images and IR images. The Shi-Tomasi’s
method shows the best performance experimentally. The
detailed performance analysis of these feature point detectors
needs the theoretical investigation of these six detectors.
The theoretical comparison of them will be detailed in our
next paper. As shown in Section 3.1.3, this paper evaluated
three transformation models between image frames. The
experiment result shows the affine transformation model has
best performance. This is because that, for the airborne-
based IR image, the camera is far away from the object and
the panning and tiling are not distinguished. The further
theoretical study of these transformation models is our
future work. Furthermore, since the target detection is a part
of target tracking system, we will apply this algorithm to the
target tracking system. This is also our future works.
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