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This paper presents a robust approach to detect multiple moving targets from aerial infrared (IR) image sequences. The proposed
novel method is based on dynamic Gabor filter and dynamic Gaussian detector. First, the motion induced by the airborne platform
is modeled by parametric affine transformation and the IR video is stabilized by eliminating the background motion. A set of
feature points are extracted and they are categorized into inliers and outliers. The inliers are used to estimate affine transformation
parameters, and the outliers are used to localize moving targets. Then, a dynamic Gabor filter is employed to enhance the difference
images for more accurate detection and localization of moving targets. The Gabor filter’s orientation is dynamically changed
according to the orientation of optical flows. Next, the specular highlights generated by the dynamic Gabor filter are detected.
The outliers and specular highlights are fused to indentify the moving targets. If a specular highlight lies in an outlier cluster,
it corresponds to a target; otherwise, the dynamic Gaussian detector is employed to determine whether the specular highlight
corresponds to a target. The detection speed is approximate 2 frames per second, which meets the real-time requirement of many
target tracking systems.

1. Introduction

Detection of moving targets in infrared (IR) imagery is a
challenging research topic in computer vision. Detecting
and localizing a moving target accurately is important
for automatic tracking system initialization and recovery
from tracking failure. Although many methods have been
developed on detecting and tracking targets in visual images
(generated by daytime cameras), there exits limited amount
of work on target detection and tracking from IR imagery in
computer vision community [1]. IR images are obtained by
sensing the radiation in IR spectrum, which is either emitted
or reflected by the object in the scene. Due to this property,
IR images can provide information which is not available in
visual images. However, in comparison to the visual images,
the images obtained from an IR camera have extremely low
signal-to-noise ratio, which results in limited information
for performing detection and tracking tasks. In addition, in

airborne IR images, nonrepeatability of the target signature,
competing background clutter, lack of a priori information,
high ego-motion of the sensor, and the artifacts due to
weather conditions make detection or tracking of targets
even harder. To overcome the shortcomings of the nature of
IR imagery, different approaches impose different constrains
to provide solutions for a limited number of situations. For
instance, several detection methods require that the targets
are hot spots which appear as bright regions in the IR
images [2–4]. Similarly, some other methods assume that
target features do not drastically change over the course
of tracking [4–7] or sensor platforms are stationary [5].
However, in realistic target detection scenarios, none of these
assumptions are applicable, and a robust detection method
must successfully deal with these problems.

This paper presents an approach for robust real-time
target detection in airborne IR imagery. This approach has
the following characteristics: (1) it is robust in presence of
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high global motion and significant texture in background;
(2) it does not require that targets have constant velocity or
acceleration; (3) it does not assume that target features do
not drastically change over the course of tracking. There are
two contributions in our approach. The first contribution is
the dynamic Gabor filter. In airborne IR video, the whole
background appears to be moving because of the motion
of the airborne platform. Hence, the motion of the targets
must be distinguished from the motion of the background.
To achieve this, the background motion is modeled by a
global parametric transformation and then motion image
is generated by frame differencing. However, the motion
image generated by frame differencing using an IR camera
is weaker compared to that of a daytime camera. Especially
in the presence of significant texture in background, the
small error in global motion model estimation accumulates
large errors in motion image. This makes it impossible to
detect the target from the motion image directly. To solve this
problem, we employ a Gabor filter to enhance the motion
image. The orientation of Gabor filter is changed from frame
to frame and therefore we call it dynamic Gabor filter. The
second contribution is dynamic Gaussian detector. After
applying dynamic Gabor filter, the target detection problem
becomes the detection of specular highlights. We employ
both specular highlights and clusters of outliers (the feature
points corresponding to the moving objects) to detect the
target. If a specular highlight lies in a cluster of outliers, it
is considered as a target. Otherwise, the Gaussian detector
is applied to determine if a specular highlight corresponds
to a target or not. The orientation of Gaussian detector is
determined by the principal axis of the highlight. Therefore,
we call it dynamic Gaussian detector.

The remainder of the paper is organized as follows.
Section 2 provides a literature survey on detecting moving
targets in airborne IR videos. In Section 3, the proposed
algorithm is described in detail. Section 4 presents the exper-
imental results. Section 5 gives the performance analysis of
the proposed algorithm. Conclusions and future works are
given in Section 6.

2. Related Work

For the detection of IR targets, many methods use the ithot
spot technique, which assumes that the target IR radiation
is much stronger than the radiation of the background and
the noise. The goal of these target detectors is then to detect
the center of the region with the highest intensity in image,
which is called ithot spot [1]. The hot spot detectors use
various spatial filters to detect the targets in the scene. Chen
and Reed modeled the underlying clutter and noise after
local demeaning as a whitened Gaussian random process
and developed a constant false alarm rate detector using
the generalized maximum likelihood ratio [2]. Longmire
and Takken developed a spatial filter based on least mean
square (LMS) to maximize the signal-to-clutter ratio for
a known and fixed clutter environment [3]. Morin have
presented a multistage infinite impulse response (IIR) filter
for detecting dim point targets [8]. Tzannes and Brooks
presented a generalized likelihood ratio test (GLRT) solution

to detect small (point) targets in a cluttered background
when both the target and clutter are moving through the
image scene [9]. These methods do not work well in presence
of significant texture in background because they employ
the assumption that that the target IR radiation is much
stronger than the radiation of the background and the
noise. This assumption is not always satisfied. For instance,
Figure 1 shows two IR images with significant texture in
background, each contains three vehicles on a road. The IR
radiation from asphalt concrete road and street lights is much
stronger than that of vehicle bodies, and street lights appear
in IR images as ithot spots but vehicles do not. Yilmaz et
al. applied fuzzy clustering, edge fusion and local texture
energy techniques to the input IR image directly, to detect
the targets [1]. This method works well for IR videos with
simple texture in background such as ocean or sky. For the
IR videos as shown in Figure 1, this method will fail because
the textures are complicated and edges are across the entire
images. In addition, this algorithm requires an initialization
of the target bounding box in the frame where the target
first appears. Furthermore, this method can only detect and
track a single target. Recently, Yin and Collins developed a
method to detect and localize moving targets in IR imagery
by forward-backward motion history images (MHI) [10].
Motion history images accumulate change detection results
with a decay term over a short period of time, that is, motion
history length L. This method can accurately detect location
and shape of multiple moving objects in presence of signifi-
cant texture in background. The drawback of this method is
that it is difficult to determine the proper value for motion
history length L. Even a well-tuned motion history length
works well for one input video, it may not work for other
input videos. In airborne IR imagery, the moving objects may
be small, and intensity appearance may be camouflaged. To
guarantee that the object shape can be detected well, a large
L can be selected. But this will lengthen the lag of the target
detection system. In this paper, we present a method for
target detection in airborne IR imagery, which is motivated
by the need to overcome some of the shortcomings of existing
algorithms. Our method does not have any assumption on
target velocity and acceleration, object intensity appearance,
and camera motion. It can detect multiple moving targets
in presence of significant texture in background. Section 3
describes this algorithm in detail.

3. Algorithm Description

The extensive literature survey indicates that moving target
detection from stationary cameras has been well researched
and various algorithms have been developed. When the
camera is mounted on an airborne platform, the whole
background of the scene appears to be moving and the
actual motion of the targets must be distinguished from the
background motion without any assumption on velocity and
acceleration of the platform. Also, the algorithm must work
in real-time, that is, the time-consuming algorithms that
repeatedly employ the entire image pixels are not applicable
for this problem.
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(a) (b)

Figure 1: Two sample IR images with significant textures in background. (a) Frame 98 in dataset1; (b) Frame 0 in dataset 3.

To solve these problems, we propose an approach to
perform the real-time multiple moving target detection in
airborne IR imagery. This algorithm can be formulated in
four steps as follows.

Step 1. Motion Compensation. It consists of the feature
point detection, optical flow detection, estimation of the
global transformation model parameter, and frame differ-
encing.

Step 2. Dynamic Gabor Filtering. The frame difference
image generated in Step 1 is weak, and it is difficult to detect
targets from the frame difference image directly. We employ
Gabor filter to enhance the frame difference image. The
orientation of Gabor filter is dynamically controlled by using
the orientation of the optical flows. Therefore, we call it
dynamic Gabor filter.

Step 3. Specular Highlights Detection. After the dynamic
Gabor filtering, the image changes appear as strong intensity
in the dynamic Gabor filter response. We call these strong
intensity specular highlights. The target detection problem
then becomes the specular highlight detection. The detector
employs the specular highlight point detection and clustering
techniques to identify the center and size of the specular
highlights.

Step 4. Target Localization. If a specular highlight lies in a
cluster of outliers, it is considered as a target. Otherwise, the
Gaussian detector is employed for further discrimination.
The orientation of the specular highlight is used to control
the orientation of the Gaussian detector. Therefore, we call it
dynamic Gaussian detector.

The processing flow of this algorithm is shown in
Figure 2. The following will describe above processing steps
in detail.

3.1. Motion Compensation. The motion compensation is a
technique for describing an image in terms of the trans-
formation of a reference image to the current image. The
reference image can be previous image in time. In airborne

Input images It−Δ, It Motion compensation

Feature points detection

Inliers extraction Outliers extraction

Global model estimation

Motion detection

Dynamic gabor filtering

Specular highlights detection Outliers clustering

Target localization

Figure 2: Processing flow of the proposed multiple moving IR
targets detection algorithm.

video, the background is moving over time due to the
moving platform. The motion of the platform therefore must
be compensated before generating the frame differencing.
Two-frame background motion estimation is achieved by
fitting a global parametric motion model based on optical
flows. To determine optical flows, it needs feature points
from two consecutive frames. The motion compensation
contains the feature point extraction, optical flow detection,
global parametric motion model estimation, and motion
detection, which are described below.
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3.1.1. Feature Point Extraction. The feature point extraction
is used as the first step of many vision tasks such as tracking,
localization, image mapping, and recognition. Hence, many
feature point detectors exist in literature. Harris corner
detector, Shi-Tomasi’s corner detector, SUSAN, SIFT, SURF,
and FAST are some representative feature point detection
algorithms developed over past two decades. Harris corner
detector [11] computes an approximation to the second
derivative of the sum-of-squared-difference (SSD) between
a patch around a candidate corner and patches shifted. The
approximation is

H =
⎛
⎝

〈
I2
x

〉 〈
IxIy

〉
〈
IxIy

〉 〈
I2
y

〉
⎞
⎠, (1)

where angle brackets denote averaging performed over the
image patch. The corner response is defined as

C = |H| − k(trace H)2, (2)

where k is a tunable sensitivity parameter. A corner is
characterized by a large variation of C in all directions of the
vector (x, y). Shi and Tomasi [12] conclude that it is better
to use the smallest eigenvalue of H as the corner strength
function, that is,

C = min(λ1, λ2). (3)

SUSAN [13] computes self-similarity by looking at the
proportion of pixels inside a disc whose intensity is within
some threshold of the center (nucleus) value. Pixels closer in
value to the nucleus receive a higher weighting. This measure
is known as (the Univalue Segment Assimilating Nucleus)
USAN. A low value for the USAN indicates a corner since the
center pixel is very different from most of its surroundings.
A set of rules is used to suppress qualitatively “bad” features,
and then local minima of the SUSANs (Smallest USAN)
are selected from the remaining candidates. SIFT (Scale
Invariant Feature Transform) [14] obtains scale invariance
by convolving the image with a Difference of Gaussians
(DoG) kernel at multiple scales, retaining locations which are
optima in scale as well as space. DoG is used because it is a
good approximation for the Laplacian of a Gaussian (LoG)
and much faster to compute. (Speed Up Robust Features)
SURF [15] is based on the Hessian matrix, but uses a very
basic approximation, just as DoG is a very basic Laplacian-
based detector. It relies on integral images to reduce the
computation time. (Features from Accelerated Segment Test)
FAST feature detector [16] considers pixels in a Bresenham
circle of radius r around the candidate point. If n contiguous
pixels are all brighter than the nucleus by at least t or all
darker than the nucleus by t, then the pixel under the nucleus
is considered to be a feature. Although r can, in principle,
take any value, only a value of 3 is used (corresponding to a
circle of 16 pixels circumference), and tests show that the best
value of n is 9.

For our real-time IR targets detection in airborne videos,
it needs a fast and reliable feature point detection algorithm.
However, the processing time depends on image contents. To

Table 1: Feature point detectors and their processing time for the
synthesized image in Figure 3.

Feature point detector
Processing
time (ms)

Number of feature
points

Harris corner detector 47 82

Shi and Tomasi’s
corner detector

31 102

SUSAN corner
detector

32 250

SIFT 655 714

SURF 344 355

FAST <1 1424

investigate the processing time, we employ the synthesized
test image as shown in Figure 3. The test image is 320 × 256
full color image which contains 252 (14 row, 18 column) 16×
16 rectangles.

The color of the rectangle is randomly determined. The
number of ground truth corners in this image is 285 (15 ×
19). The experiments are performed on a Windows Vista
machine mounted with a 2.33 GHz Intel Core 2 CPU and
2 GB memory. The corners detected by above mentioned
algorithms are marked by small red rectangles in Figures 3(a)
to 3(f). The processing time and the detected corner number
are listed in Table 1. According to the processing time in
Table 1 and feature point detection results in Figure 3, we
obtain the following conclusions. (i) SIFT and SURF need
heavy computation, and they output many wrong corners
(refer to Figures 3(d) and 3(e)). They are not suitable for
real-time target detection algorithms. (ii) The processing
time for FAST is less than 1 ms. This is really attractive.
However, it generates many redundant feature points (refer
to Figure 3(f)) in the local area of the real corner. The total
number of the corners detected is 1424, which is much bigger
than the number of the ground truth corners. And further,
we tested this algorithm by using images from airborne IR
camera. It fails to extract feature points for many images.
FAST is not proper for feature point detection in airborne
imagery. (iii) Harris corner detector is fast. But it missed
many ground truth corners. It is not candidate for our
algorithm. (iv) The processing time for SUSAN and Shi-
Tomasi’s corner detector are almost the same. SUSAN detects
more ground truth corner than Shi-Tomasi’s method for this
synthesized image. Further, to investigate the robustness of
SUSAN and Shi-Tomasi’s corner detector, another 640× 512
full color test image is synthesized. This test image contains
252 (14 row, 18 column) randomly colored triangles, which
form 518 (37 × 13 + 18 (top) + 19 (bottom)) ground truth
corners. The experiment result is shown in Figure 4. Shi-
Tomasi’s method detected 265 corner points, as marked by
small red rectangles in Figure 4(a), which are all ground
truth corner points. SUSAN detected 598 corner points,
as depicted by small red rectangles in Figure 4(b), which
contain 80 false corner points (refer to the two close small
rectangles at the top vertex of some triangles). These false



EURASIP Journal on Image and Video Processing 5

(a) (b)

(c) (d)

(e) (f)

Figure 3: Feature point detection results for six algorithms; (a) Harris corner detector, (b) Shi and Tomasi’s corner detector, (c) SUSAN
corner detector, (d) SIFT feature point detector, (e) SURF feature point detector, and (f) FAST corner detector.

corner points will deteriorate the postprocessing. Further-
more, the robustness of these two detectors is investigated
by using the IR images from airborne IR camera, as shown in
Figure 1, in which (a) shows an IR image with complicated
content, and (b) relatively simple contents. The experiment
results are shown in Figure 5, in which (a) shows the corner
points detected by Shi-Tomasi’s method, and (b) by SUSAN.
Although it is difficult to tell which ones are truth corner
points in Figures 5(a) and 5(b), it is obvious that (b) contains
many false corner points. From these results, it is clear that
Shi-Tomasi’s method is more robust than SUSAN. For more

details about performance evaluation of corner detection
algorithms, readers are referred to [17].

From above results and discussion, this paper employs
Shi-Tomasi’s method to detect feature points. For two input
images, let Pt

′ = {pt′1 , . . . , pt
′
M} and Pt = {pt1, . . . , ptN} denote

the feature points detected from It
′

and It, respectively, where
t′ = t − Δ, pt

′
i = (xt

′
i , yt

′
i ), ptj = (xtj , y

t
j), i = 1, 2, . . . ,M and

j = 1, 2, . . . ,N . In the following, It
′

is called previous image,
It is called current image or reference image. These feature
points are used for optical flow detection.
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(a)

(b)

Figure 4: Feature points detected by (a) Shi and Tomasi’s corner detector, and (b) SUSAN corner detector, for 640× 512 color image.
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(a)

(b)

Figure 5: Feature points detected by (a) Shi and Tomasi’s corner detector and, (b) SUSAN corner detector, for 640× 512 color image.

3.1.2. Optical Flow Detection. The optical flow is the appar-
ent motion of the brightness patterns in the image [18].
In our algorithm, the feature points obtained in previous
section are used as the brightness patterns in the definition
of optical flow [18]. That is, the task for optical detection is
to find the corresponding feature point ptj in frame It, for

the feature point pt
′
i in frame It

′
, where i = 1, 2, . . . ,M, j =

1, 2, . . . ,N .

There are many optical flow detection algorithms.
Recently there are several new developments on this topic.
Black and Anandan [19] proposed a framework based on
robust estimation that addresses violations of the brightness
constancy, and spatial smoothness assumptions caused by
multiple motions. Bruhn et al. [20] developed a differential
method that combines local methods such as the Lucas-
Kanade’s technique and global methods such as the Horn-
Schunck’s approach. Zitnick et al.’s method is based on
statistical modeling of an image pair using constraints
on appearance and motion [21]. Bouguet’s method is the
pyramidal implementation of the Lucas-Kanade’s technique
[22]. The evaluation results of these four algorithms show
that Bouguet’s method is the best for the interpolation task
[23]. As measured by average rank, the best performing
algorithms for the ground truth motion are Bruhn et al. and
Black and Anandan.

In our algorithm, we employed Bouguet’s method for
optical flow detection. Figures 6(a) and 6(b) show two input
images, It

′
and It. The frame interval, Δ, is an important

parameter that affects the quality of the optical flow. If it is
too small, the displacement between two consecutive frames
is also too small (close to zero). In this case, the optical flow
cannot be precisely detected. If it is too large, the error in
the process of finding the corresponding feature points in
the consecutive frame increases. In this case, the optical flow
also cannot be precisely detected. In our airborne videos, the
helicopter flew at very high altitude, and the displacement
between consecutive image frames is relatively small. To
speed up the algorithm, Δ is set at 3. The experiments
show our algorithm works well for Δ = 1, . . . , 4. Figure 6(c)
shows the optical flows detected from the feature points
{pt′1 , . . . , pt

′
M} and {pt1, . . . , ptN}, where the optical flow are

marked by red line segments, and the endpoints of the optical

flows are marked by green dots. Let Ft
′t = {�Ft′t1 , �Ft′t2 , . . . , �Ft′tK }

denote the detected optical flows. Note that the start point

of ith optical flow, �Ft′ti , belongs to set Pt
′
, and the endpoint

belongs to set Pt . For the feature points in set Pt
′

and Pt ,
from which no optical flow is detected, they are filtered
out. Therefore, after this filtering operation, the number of
feature points in two sets, Pt

′
and Pt , becomes the same with

the number of optical flows in optical flow set Ft
′t, that is,
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(a) (b)

(c) (d)

Figure 6: Optical flow detection and frame differencing results. (a) and (b) Two input images; (c) Detected optical flows; (d) Frame
difference.

K. They are rewritten as Pt
′ = {pt′1 , . . . , pt

′
K}, and Pt = {pt1,

. . ., ptK}, accordingly. In the following, in order to make
the description easier, we consider that the feature points

in Pt is sorted so that the start point and endpoint of �Ft′ti
are consequently pt

′
i ∈ Pt

′
and pti ∈ Pt , respectively. That

is, �Ft′ti means �pt′i pti . Note that there is no need to perform
this sorting in the implementation because the optical flow
�Ft′ti holds the index information for the feature points in set
Pt

′
and Pt .

3.1.3. Global Parametric Motion Model Estimation

(A) Transformation Model Selection. Motion compensation
requires finding the coordinate transformation between
two consecutive images. It is important to have a precise
description of the coordinate transformation between a pair
of images. By applying the appropriate transformations via a
warping operation and subtracting the warped images from
the reference image, it is possible to construct the frame
difference that contains image changes (motion image).

There exist many publications about motion parameter
estimation which can be used for motion compensation. A
coordinate transformation maps the image coordinates, x′ =
(x′, y′)T , to a new set of coordinates, x = (x, y)T . Generally,
the approach to finding the coordinate transformation relies

on assuming that it will take one of the following six models,
(1) translation, (2) affine, (3) bilinear, (4) projective, (5)
pseudo perspective, and (6) biquadratic, and then estimating
the two to twelve parameters in the chosen models.

The translation model is based on the assumption
that the coordinate transformation between frames is only
translation. Although it is easy to implement, it is very
poor to handle large changes due to camera rotation,
panning, and tilting. This model is not suitable for our
purpose. On the other hand, the parameter estimation in
8-parameter projective model and 12-parameter biquadratic
model becomes complicated. Time-consuming models are
not suitable for the real-time applications. Therefore, our
algorithm does not employ these two models, neither. The
following investigates affine, bilinear, and pseudo perspective
models. Let (x′, y′) denote the feature point coordinates in
previous image, and (x, y) the coordinates in the current
image. Affine model is given by

(
x
y

)
=
(
a1 a2

a3 a4

)(
x′

y′

)
+

(
a5

a6

)
. (4)

The bilinear model is defined as

x = a1x
′ + a2y

′ + a3 + a4x
′y,′

y = a5x
′ + a6y

′ + a7 + a8x
′y′.

(5)
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(a) (b)

(c) (d)

Figure 7: Image transformation results; (a) Original image, (b) Image generated by bilinear model, (c) Image generated by pseudo
perspective model, and (d) Image generated by Affine model.

The pseudo perspective model is given by

x = a1 + a2x
′ + a3y

′ + a4x
′y′ + a5x

′2,

y = a4y
′2 + a5x

′y′ + a6 + a7x
′ + a8y

′.
(6)

Figure 7(b) shows the transformed image for the image
in Figure 7(a), by applying the bilinear transformation with
parameters of a1 = a6 = 1.0, a4 = −0.001, and others (a2, a3,
a5, a7, a8) equal to 0.0. For this set of parameters, if a4 is also
set to 0.0, no transformation is applied to the original image.
However, if a4 is set at −0.001, which corresponds to the
fact that a4 contains 1‰ error, the output image is greatly
deformed. Similarly, Figure 7(c) shows the transformed
image for the image in (a), by applying pseudo perspective
transformation with parameters of a2 = a8 = 1.0, a5 =
−0.001, and others (a1, a3, a4, a6, a7) equal to 0.0. For this
set of parameters, if a5 is also set to 0.0, no transformation is
applied to the original image. However, if a5 is set at −0.001,
which corresponds to the fact that a5 contains 1‰ error, the
output image is greatly deformed. These results show that
bilinear model and pseudo perspective model are sensitive to
parameter errors. A small error in parameter estimation may
cause huge difference in the transformed images. We used the
images from airborne IR camera to test the frame difference
based on these two models, the results are poor. In contrast,
the affine transformation contains translation, rotation, and

scale although it cannot capture camera pan and tilt motion.
However, in the system to generate airborne videos, cameras
are usually mounted on the moving platform such as a
helicopter or an UAV (unmanned aerial vehicle). In this case,
there is no camera pan and tilt motion. Figure 7(d) shows the
transformed image for the image in (a), by applying affine
transformation with parameters of a1 = a4 = 1.0, a2 = 0.02,
a3 = −0.02, and a5 = a6 = 1.0. This setting is corresponding
to that a2 and a3contain 2% error, respectively. Comparing
the results in Figures 7(b), 7(c), and 7(d), we can say that
even the parameter estimation error in affine transformation
is 20 times larger than the error in bilinear transformation or
pseudo perspective transformation (2% in affine transform,
to 1‰ in bilinear transformation and pseudo perspective
transformation), the image deformation is still tolerable (see
Figure 7(d)). This result shows that the affine model is robust
to the parameter errors. Therefore, in our algorithm, we
employ affine model for motion detection.

(B) Inliers/Outliers Separation. The feature points
Pt

′ = {pt′1 , . . . , pt
′
K} and Pt = {pt1, . . . , ptK}, obtained

in Section 3.1.2, are used to estimate six parameters in
(4). The corresponding relations for the feature points
in set Pt

′
and Pt are determined by the optical flows,

Ft
′t = {�Ft′t1 , �Ft′t2 , . . . , �Ft′tK }. For the feature points in set Pt

′

and Pt , some of them are associated with the background,
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and some with the moving targets. The feature points
associated with the moving targets are called outliers.
Those associated with the background are called inliers. To
detect the motion image (that is, image changes) for two
consecutive images, the previous image is wrapped to the
current image by performing affine transformation, and
then the frame difference image can be obtained by image
subtraction. This operation needs precise transformation
model. To estimate the transformation model precisely,
the outliers must be excluded. That is, the feature points
need to be categorized into outliers and inliers, and only
the inliers are used to estimate the affine transformation
parameters. The inliers/outliers are separated automatically
by the following algorithm.

Inliers/Outliers Separation Algorithm. (i) Using all feature
points in set Pt

′
and Pt , 6-paramers in affine model are

primarily estimated by least-square method [24]. That is,
a1, . . . , a6 are obtained by solving the equation below.
⎛
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∑
xt

′
i

∑
yt

′
i 0 K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2

a3

a4

a5

a6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
xti x

t′
i∑

xti y
t′
i∑

xti∑
yti x

t′
i∑

yti y
t′
i∑

yti

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

where the summation
∑

represents
∑K

i=1, (xt
′
i , yt

′
i ) ∈ Pt

′
, and

(xtj , y
t
j) ∈ Pt . Let A′ denote the affine model obtained from

(7).
(ii) Applying A′ to the feature points in set Pt

′
, the

transformed feature points are obtained, which are denoted
by P̃t

′ = { p̃t′1 , . . . , p̃t
′
K}. The error between the transformed

feature points and their corresponding feature points in Pt is
defined as

Ei =
∥∥∥ p̃t′i − pti

∥∥∥, (8)

where ‖ · ‖means norm operation, i = 1, . . . ,K .
(iii) Inliers/outliers are discriminated according to the

following criteria:

p̃t
′
i and pti are

⎧⎨
⎩

inliers, if Ei ≤ ET ,

outliers, if Ei > ET ,

ET = λE
K

K∑

i=1

Ei,

(9)

where λE is the weighting coefficient. The value of λE depends
on the size of the moving target. The larger the moving
target is, the smaller the value of λE needs to be. In airborne
IR videos, the moving target is relatively small because
the observer is at high altitude, λE can be relatively large.
Experiments show that the value of λE can be in the range
of 1.0 to 1.4, currently is set at 1.3.

The algorithm described above is based on the fact
that for the feature points belonging to the moving target,
the error defined in (8) is large because the corresponding
feature points are moving accompanied with the moving
target. Figure 6(c) shows the inliers/outliers separation for
the feature points detected from the input images in Figures
6(a) and 6(b). The outliers are marked by blue dots.
After this operation, Pt

′
is separated to inliers set Pt

′
in =

{pt′1 , . . . , pt
′
Kin
}, and outliers set Pt

′
out = {pt′1 , . . . , pt

′
Kout
}, Pt

is separated to inliers set Ptin = {pt1, . . . , ptKin
} and outliers

set Ptout = {pt1, . . . , ptKout
}, and Ft

′t is separated to optical

flows Ft
′t

in = {�Ft
′t

1 , �Ft′t2 , . . . , �Ft′tKin
} corresponding to inliers, and

optical flows Ft
′t

out = {�Ft′t1 , �Ft′t2 , . . . , �Ft′tKout
} corresponding to

outliers. And the following relations hold

Pt
′ = Pt

′
in + Pt

′
out,

Pt = Ptin + Ptout,

Ft
′t = Ft

′t
in + Ft

′t
out.

(10)

That is, the first and second formula in (10) show that
the total feature points detected from the previous image
frame and current image frame are separated into inliers and
outliers, respectively. Correspondingly, the optical flows are
also separated into two classes, optical flows belonging to
inliers and those belonging to outliers, as indicated by the
third formula in (10).

Again, in the following, to make the description easier,
let us assume pt

′
1 ∈ Pt

′
in corresponds to pt1 ∈ Ptin, and pt

′
1 ∈

Pt
′

out to pt1 ∈ Ptout and so on. The actual implementation does
not need this assumption because the optical flows hold the
feature point correspondence (refer to Section 3.1.2). Inliers
are used in the affine model parameter estimation below, and
in dynamic Gabor filter (refer to Section 3.2.2). Outliers are
used in target localization (refer to Section 3.4.2).

(C) Affine Transformation Parameter Estimation. There are
the six parameters in affine transformation. It needs three
pairs of feature points in Pt

′
in and Ptin to estimate these

six parameters. However, affine model determined only by
using three pairs of feature points might not be accurate.
To determine these parameters efficiently and precisely, our
method employs the following algorithm.

Affine Model Estimation Algorithm. (1) Randomly choose L
triplet inliers pairs from Pt

′
in and Ptin, respectively. For a triplet



EURASIP Journal on Image and Video Processing 11

inliers pair (pt
′
i , pt

′
i+1, pt

′
i+2) ∈ Pt

′
in and (pti , p

t
i+1, pti+2) ∈ Ptin, an

affine model determined by solving the following equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

xt
′
i yt

′
i 0 0 1 0

xt
′
i+1 yt

′
i+1 0 0 1 0

xt
′
i+2 yt

′
i+2 0 0 1 0

0 0 xt
′
i yt

′
i 0 1

0 0 xt
′
i+1 yt

′
i+1 0 1

0 0 xt
′
i+2 yt

′
i+2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2

a3

a4

a5

a6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

xti
xti+1
xti+2
yti
yti+1
yti+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where (xt
′
i , yt

′
i ) ∈ Pt

′
in, and (xtj , y

t
j) ∈ Ptin, and i =

1, 3, 6, . . . , 3L. Let A = ( A1, A2, . . . , AL) represent these L
Affine models. They are used to determine the best affine
model below.

(2) Apply As ∈ A to the previous image It
′
and feature

points in Pt
′

in. It generates the transformed image It
′
A and

transformed feature points P̃t
′

in = { p̃t′1 , . . . , p̃t
′
Kin
}. The local

area correlation coefficient (LACC) is used to determine
whether two feature points are matched. The LACC is given
by

ci j =
n∑

k=−n

m∑

l=−m
×
[
It
′
A

(
x̃t

′
i + k, ỹt

′
i + l

)
− It

′

A

(
x̃t

′
i , ỹt

′
i

)]

(2n + 1)(2m + 1)
√
σi
(
It
′
A

)
× σj(It)

×
[
It
(
xtj + k, ytj + l

)
− It(xti , yti

)]

(2n + 1)(2m + 1)
√
σi
(
It
′
A

)
× σj(It)

,

(12)

where It
′
A and It are the intensities of the two images, (x̃t

′
i , ỹt

′
i )

and (xti , y
t
i ) the ith and jth feature points to be matched,

m and n the half-width and half-length of the matching
window,

I
(
x, y

) =
∑n

k=−n
∑m

l=−m
[
I
(
x + k, y + l

)]

(2n + 1)(2m + 1)
(13)

is the average intensity of the window, and

σ =
√∑n

k=−n
∑m

l=−m I
2
(
x + k, y + l

)

(2n + 1)(2m + 1)
− I2(

x, y
)

(14)

is the standard variance of the image in matching window. ci j
ranges from −1 to 1, indicating the similarity from smallest
to largest. Once again, as mentioned in Section 3.1.3.(B), the
optical flows keep the corresponding relation for ith feature
point in Pt

′
in and jth feature point in Ptin. For simplifying

description, we just say the feature points in P̃t
′

in are matched
to those in Ptin one to one, starting from 1 to Kin. Therefore,
ci j can be rewritten as cii. The evaluation function for affine
model As is defined by

Es =
Kin∑

i=1

cii, (15)

where s = 1, 2, . . . ,L.
(3) The affine model Ab ∈ A, whose evaluation value

is maximal, that is, Eb = max(E1,E2, . . . ,EL), is selected as

the best affine model in our algorithm. Ab is used for image
change detection below.

In above framework, there are two affine transforma-
tion estimations. The first one is to choose L sets of
affine transformations by employing the inliers detected in
Section 3.1.3.(B). The second one is to estimate the best
affine transformation by calculating the matching measure
according to (15). In this framework, the influence of outliers
can be determined as follows [25]. The probability p that
at least one data set of three points belongs to the inliers, is
derived from,

p
(
ε, q,L

) = 1−
{

1− [
(1− ε)q]3

}L
, (16)

where ε(<0.5) is the ratio of moving target regions to the
whole image, q is the probability that the corresponding
points are inliers. The probability that this algorithm picks
up the outliers is 1 − p. For example, p ≈ 0.993 when
ε = 0.3, q = 0.7, and L = 40, then 1 − p = 0.007. That
is, the probability that the outliers will influence the affine
transformation estimation is very low, if the moving targets
constitute a small area (i.e., less than 50%). In airborne video
camera, this requirement can be easily satisfied.

(D) Image Changes Detection. Here, in airborne imagery, the
image changes mean changes caused by the moving targets.
We call image changes motion images. The previous image is
transformed by the best affine model Ab, and subtract from
the current image. That is, the frame difference is generated
as follows:

Idiff =
∣∣∣It − Ab × It′

∣∣∣, (17)

where It
′

and It is previous image and current image,
respectively. Figure 8(d) shows the frame difference image
generated by (17) from two input images in Figures 6(a) and
6(b).

3.2. Dynamic Gabor Filter

3.2.1. Problems of the Thresholding Algorithms. To detect the
targets, the motion image needs to be binarized. Figure 8
shows the binarization results for the frame difference image
in Figure 6(d) by employing three binarization algorithms.
Figures 8(a) and 8(b) show the results for a fixed threshold
at 10 and 30, respectively. Figure 8(c) shows the output
of the adaptive thresholding algorithm based on mean C,
where the window size is 5 × 5 and the constant C is set
at 5.0. Figure 8(d) shows the output of Gaussian adaptive
thresholding algorithm, where the window size is 5 × 5
and the constant C is set at 10.0. From these binary
images, it is difficult to detect targets. Although by applying
some morphological operations such as dilation and erosion
techniques, it is possible to detect targets from some frame
difference images. However for video sequence processing,
this method is not stable. To solve this problem, we need
some technique to enhance the frame difference image.

Image enhancement is the improvement of digital image
quality (e.g., for visual inspection or for machine analysis),


