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Abstract

This paper proposes an algorithm for solving subsets of typical (canonical) jigsaw puzzles. This algorithm combines

shape and image matching with a cyclic ‘‘growth’’ process that tries to place pieces in their correct positions. First, the

jigsaw pieces are extracted from the input image. Then, the corner points of the jigsaw pieces are detected. Next, piece

classification and recognition are performed based on jigsaw piece models. Connection relationships between pieces are

calculated and finally recovered by using boundary shape matching and image merging. We tested this algorithm by

employing real-world images containing dozens of jigsaw pieces. The experiment�s results show this algorithm is efficient
and effective.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Radack and Badler (1982) originally summa-

rized the two-dimensional jigsaw puzzle problem
as: ‘‘Given a set of simply connected planar regions

(silhoueletted puzzle pieces), rotate and translate

each peace so that the pieces fit together into one

region, with no significant area gaps or overlapping

pieces.’’ However, this summarization made no

mention of texture and color information. Here, as

a scientific problem, the jigsaw puzzle problem can

be defined as follows: For SP ¼ fP0; P1; . . . ; PN�1g,
where Pi represents the ith jigsaw piece ði 2 f0;
1; . . . ;N � 1gÞ, and has the attributes of a closed
boundary and a solid texture; and for Pi, there ex-
ists Pj ði 6¼ j; i; j 2 f0; 1; . . . ;N � 1gÞ so that a

boundary part of Pi is completely identical with a
boundary part of Pj, and the textures and color
near these two boundary parts are most similar,

that is, Pi and Pj are neighbors (or can be con-
nected), then find the neighbor for Pk ðk 2 f0;
1; . . . ;N � 1gÞ and connect all pieces in SP into one
large piece. Moreover, Radack and Badler did not
take into account that jigsaw puzzle solving can be

a group activity (e.g. for children), and not neces-

sarily a solitary pastime.

Solving jigsaw puzzles with a computer involves

a number of tasks related to various machine vision
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applications: shape description, partial boundary

matching, pattern recognition, feature extraction,

and heuristic matching. Consequently, many in-

spired researchers have taken up the challenge.

Freeman and Garder first tackled the problem in

1964, and their work remains fundamental in the
field. Because of limitation in computer language,

digitizer resolution, and device imaging, they only

managed to solve this problem by using the piece

boundary shape information. Since then, many

algorithms have been proposed. Radack and Ba-

dler (1982) proposed a shape representation algo-

rithm capable of efficiently matching boundaries of

two-dimensional jigsaw puzzle pieces. This process
uses a polar coordinate system located at point

with curvature maxima and minima. It is a method

for general boundary curve representation and

matching. Webster et al. (1991) proposed isthmus

critical points for solving jigsaw puzzles. Their so-

lution deals with the canonical (off-the-shelf) jigsaw

puzzles. Isthmus and isthmus critical points are

very efficient features for solving jigsaw puzzles.
Kosiba et al. (1994) derived a new set of features

based on the shape and color characteristics of off-

the-shelf puzzles. The work of Yao et al. (1997) is a

preparatory work which tries to solve the jigsaw

puzzle with a computer. It pointed out the prob-

lems existing in the work done by Freeman and

Garder, and proposes using the fine segmentation

of boundary curve of off-the-shelf puzzle pieces. All
works can be categorized by the types of informa-

tion used in solving the problem and by whether

the targets were canonical jigsaw puzzles. The

summaries are shown in Table 1. The work of

Freeman and Garder and the work of Radack and

Badler did not deal with canonical jigsaw puzzles.

However, all methods employed the piece bound-

ary shape information. Kosiba et al.�s and Chung
et al.�s (1998) methods both employed color infor-
mation. Like Kosiba�s method, Chung et al. also
proposed solving this problem using shape and

color information in which the distance from

points on boundary curves to the line determined

by two neighboring corner points are used for

shape matching. There are also new attempts to

solve this problem by using neural networks (e.g.,
Suganthan, 1999), but the results are less than

satisfactory. There are two strategies when solving

this problem by a computer: top-down or bottom-
up. The top-down methodology is very similar to

the way a jigsaw puzzle is fabricated. Usually, to

generate a jigsaw puzzle, a large piece of picture is

cut into numerous small irregular pieces by using

cutting-rules. For a given piece in SP , the shape of
its neighbor piece can be determined by using the

cutting-rules. Glassner (2002) employed this ap-

proach. He took a photograph of the entire picture
of the jigsaw puzzle, and then drew jigsaw-shaped

pieces in Adobe Photoshop. Then, the pieces were

separated and scattered by a program with the

orientation of each piece being fixed. An attempt

was then made to reassemble the pieces. This is not

a real-world canonical jigsaw puzzle, so it has not

been put into Table 1. The bottom-up methodo-

logy intends to find the neighboring piece for a
given piece in SP by using shape and texture in-
formation. Works in Table 1 use this approach.

Generally, the cutting-rules are not given to the

player, and because the bottom-up methodology is

similar to the process that people use in solving

a puzzle by hand, we employed the bottom-up

methodology to solve this problem. Here, we pro-

pose a method to solve the jigsaw puzzle problem
by using both piece boundary shape information

and piece boundary image information. Kosiba

et al.�s and Chung et al.�s methods also employed
these two types of information. The difference be-

tween their method and ours is as follows. In both

methods, color information is employed, besides of

Table 1

Categorization of methods to solve jigsaw puzzle problem

Method

proposed

by

Deal with the

canonical

jigsaw

puzzles?

Use piece

boundary

shape

information?

Use piece

texture

or color

information?

Freeman and

Garder (1964)

No Yes No

Radack and

Badler (1982)

No Yes No

Webster et al.

(1991)

Yes Yes No

Kosiba et al.

(1994)

Yes Yes Yes

Yao et al. (1997) Yes Yes No

Chung et al.

(1998)

Yes Yes Yes
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the piece boundary shape information. This dis-

tinguishes their method from others. The color

characteristics are the mean and the variance of the

hue, saturation, and intensity values for each piece

or for the sampling windows situated at regular

intervals along the contour of the piece. Kosiba
et al. defined a feature set for shape matching, and

Chung et al. used the distance from points on

boundary curves to the line determined by two

neighboring corner points for shape matching.

There are three aspects to our method as described

in Section 3: (i) we directly use the partial boundary

curve (or jigsaw piece edge) matching to decide the

candidates of the matched pieces. This method
omits the problem of determining and calculat-

ing the feature set from the boundary curve; (ii) we

use image merging for piece boundary images;

(iii) we introduce the canonical jigsaw piece model

in the proposed method. By using the jigsaw piece

model, jigsaw pieces are classified into 18 catego-

ries according to the shape information. This re-

duces the computation time. Our algorithm to
solve the jigsaw puzzle can be formulated in six

steps:

(1) Extract the jigsaw pieces from the color input

image and express the jigsaw pieces according

to their boundary curves.

(2) Detect the dominant points of each piece, and

then seek the corner points from them.
(3) Separate the boundary curves into four edges

by using the corner points as the separation

points (note that the corner points are quartet

points), and then perform the piece classifica-

tion and recognition.

(4) Perform the boundary shape matching to es-

tablish the candidates for the neighbor pieces.

(5) Perform image merging between the present
piece and all candidates.

(6) Based on the results of steps 4 and 5, the con-

nection relationships among the jigsaw pieces

are recovered.

The of the rest of this paper is organized as fol-

lows: Section 2 describes the jigsaw piece model

construction. Section 3 shows the whole algorithm
to solve the jigsaw puzzles. Section 4 represents the

experiment results of employing real-world im-

ages. The paper ends with conclusions and sug-

gestions for future research.

2. Model construction of jigsaw pieces

For a piece of an N -piece canonical jigsaw
puzzle, considering all possible matching with

other pieces, the number reaches 4	 4	ðN � 1Þ
(each piece generally has four edges). So peo-

ple can imagine how big the total number of mat-

ches among all jigsaw pieces. There exists a

‘‘combination explosion’’ phenomenon in the jig-
saw puzzle problem. To alleviate the ‘‘combination

explosion’’, we introduced jigsaw piece models for

canonical jigsaw puzzles. There exist four corner

points for the canonical jigsaw puzzle piece, and

its boundary curve can be separated into four edges

at four corner points. Each of the four edges fits

into one of the following three patterns: (1)

a straight lined edge denoted by ‘‘L’’, (2) a concaved
and curved edge denoted by ‘‘C’’, (3) a convexed
and curved edge denoted by ‘‘V ’’. These three types
of edges are typical of any canonical jigsaw piece

and are used to classify the jigsaw pieces.

If we skeletonize the four edges of a jigsaw

piece, all jigsaw pieces can be classified into three

categories: corner piece, edge piece and interior

piece.
The corner piece, denoted by R, is located at the

corner of the whole jigsaw puzzle. There are always

only four corner pieces in a canonical jigsaw puzzle

no matter how big the number of the total pieces.

Corner pieces are further classified into four types as

shown in the second column, from row 2 to 5, of

Table 2, which are named R0, R1, R2 and R3, re-
spectively. The edge configurations of Ri (i ¼ 0, 1, 2,
3) are ‘‘CCLL’’, ‘‘VCLL’’, ‘‘CVLL’’, and ‘‘VVLL’’,
correspondingly, as given in the third column, from

row 2 to 5, of Table 2. Notice here that ‘‘CLLC’’ is
the same as ‘‘CCLL’’ because ‘‘CCLL’’ can be ob-
tained by rotating ‘‘CLLC’’ or by changing the
starting corner point. This is true of other pieces.

In Table 2, the starting corner point for all jig-

saw piece patterns in the second row is set at the left-
bottom corner, and the edges are traced clockwise.

The edge pieces, denoted by E, are found on the
four sides of the whole jigsaw puzzle. The number
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of edge pieces varies with the size of the jigsaw
puzzle. Taking into account all possible combi-

nations of edge patterns, eight types of edge pieces

are found, and are shown in rows 6 through 13

in the second column of Table 2, and are named

E0 through E7, and the edge configurations are
\CCCL";\CVCL"; . . . ; \VVVL", sequentially, as

shown in the third column, from row 6 to 13.

The interior pieces, denoted by I, are found on
the interior area of the jigsaw puzzle. The number

of interior pieces also changes with the size of the

jigsaw puzzle, and there are far more interior pie-

ces than edge pieces. There are six types of interior

pieces given all possible edge combination and

they are listed in the second column, from row 14

to 19, of Table 2, and are named I0; I1; . . . ; I5,
and the edge configurations are expressed as
\CCCC"; \VCCC"; . . . ; \VVVV ", correspondingly,

as given in the third column.

Thus, we can conclude that the canonical jigsaw

pieces can be classified into 18 categories which

are denoted by set SM, i.e., SM ¼ ffR0; . . . ;R3g;

fE0; . . . ;E7g; fI0; . . . ; I5gg. Their pattern images are
shown in the second column of Table 2.

Let us employ the notation ‘‘PT:ET ’’ to express
the edge connection relationships among jigsaw

pieces, where PT means the neighboring piece type
(i.e., R, E or I), and ET the neighbor edge type (i.e.,
L, C or V ). Then the connection relationships
among these 18 kinds of jigsaw pieces are sum-

marized in column 4 to 7 of Table 2. The 4th, 5th,
6th, and 7th columns shows the required neigh-

boring piece type and neighbor edge type of the

four edges respectively. For the corner pieces there

exist two kinds of connection relationships––E:V
and E:C, as shown in the 4th and 5th columns of
Table 2. E:V means that the required neighboring
piece is an edge piece, and the required neighbor

piece has a ‘‘convex’’ edge. Similarly, for the
edge pieces, there exist six kinds of connection

relationships––E:V , E:C, R:V , R:C, I:V , and I:C.
And for the interior pieces, there exist four kinds

of connection relationships––E:V , E:C, I:V , and
I:C. ‘‘None’’ in the 6th and 7th column means no

Table 2

Jigsaw piece boundary description and each edge�s neighboring piece type and edge type

Piece type Boundary

description

Edge 0 Edge 1 Edge 2 Edge 3

R R0 CCLL E:V E:V None None

R1 VCLL E:C E:V None None

R2 CVLL E:V E:C None None

R3 VVLL E:C E:C None None

E E0 CCCL E:V , R:V I:V E:V , R:V None

E1 CVCL E:V , R:V I:C E:V , R:V None

E2 VCCL E:C, R:C I:V E:V , R:V None

E3 CCVL E:V , R:V I:V E:C, R:C None

E4 VVCL E:C, R:C I:C E:V , R:V None

E5 CVVL E:V , R:V I:C E:C, R:C None

E6 VCVL E:C, R:C I:V E:C, R:C None

E7 VVVL E:C, R:C I:C E:C, R:C None

I I0 CCCC E:V , I:V E:V , I:V E:V , I:V E:V , I:V

I1 VCCC E:C, I:C E:V , I:V E:V , I:V E:V , I:V

I2 VCVC E:C, I:C E:V , I:V E:C, I:C E:V , I:V

I3 CVVC E:V , I:V E:C, I:C E:C, I:C E:V , I:V

I4 VVVC E:C, I:C E:C, I:C E:C, I:C E:V , I:V

I5 VVVV E:C, I:C E:C, I:C E:C, I:C E:C, I:C
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neighboring piece exists. This table�s contents
plays an important role in the proposed algorithm

to solve the jigsaw puzzle problem.

3. Overview of the proposed algorithm

Our algorithm can be formulated in six steps.

Once the process of image capture begins, there is

no other human intervention while the puzzle is

being solved. Steps 1–3 relate to the image pro-

cessing techniques in the proposed algorithm. A

brief summary is given in the following; details

refer to the literature (Yao et al., 2002). The defi-
nitions, symbols, and notations, used in a previous

work (Yao et al., 2002), are summarized in Table

3. They will be also employed here to describe the

whole algorithm.

Step 1. Extract the jigsaw pieces from the color

input image and express the jigsaw pieces accord-

ing to their boundary curves.

Jigsaw piece extraction is a problem belonging

to the field of object extraction. We developed a

new method to extract the jigsaw pieces. In this

method, multiple color images with different

background color are employed to make a mask

image. Then, the evaluation image is created from
one of the input images. The last step is to perform

a conditional contraction to the mask image. This

method requires that the jigsaw pieces be in the

same position in the multiple input images with

different background color, and that the jigsaw

pieces do not overlap each other but remain far

enough apart to be extracted independently.

Step 2. Detect the dominant points of each
piece, and then seek the corner points from them.

The dominant points are detected based on

multi-scale curvature. The corner points are the

special dominant points, which have the following

properties:

(1) their interior angles are almost the same;

(2) the central angles between any two succeeding
corner points are nearly the same;

(3) their distances to the centroid of the jigsaw

piece Pi are approximately the same;
(4) within the regions supporting them, the partial

boundary curves are all convex from the cent-

roid;

(5) the line determined by the leftmost and right-

most points of the region of support of the
dominant point, Ds

i , is nearly perpendicular

to the line determined by Ds
i and DC. Note that

DC is the middle point of the chord between

the leftmost and rightmost points of the region

of support of the dominant point, Ds
i .

The corner points are calculated from the

dominant points based on above properties.
Step 3. Separate the boundary curves into four

edges by using the corner points as the separation

points (note that the corner points are quartet

points), and then perform the piece classification

and recognition.

The jigsaw piece classification determines which

category the piece belongs to, i.e., R, E or I, and the
jigsaw piece recognition determines which model
in Table 2 it corresponds to. The jigsaw piece

recognition consists of edge recognition and piece

Table 3

Nomenclature

Symbols Meaning

Pi ith jigsaw piece
SP Set of jigsaw pieces extracted from the input

image

N Number of jigsaw pieces in SP
Bi Jigsaw piece boundary curve of Pi
SB Set of piece boundary curves

Ki Curvature function of Bi
Dk
i kth dominant of Bi

SDi Set of dominant points of Bi
Ni Number of dominant points in SDi
hki Interior angle at Dk

i of Pi
Shi Set of interior angles at Dk

i of Pi
Cmi mth corner point of Pi
SCi Set of corner points of Pi
ami Interior angle at mth corner point of Pi
Sai Set of interior angles at corner points of Pi
Emni Clockwise edge from start-point m to end-

point n of PibEEnmi Counterclockwise edge from start-point n to
end-point m of Pi

SEi Set of clockwise edges of Pi
SÊEi Set of counterclockwise edges of Pi
Lmni Length of edge Emni
ckli Central angle by the dominant point Dk

i , the

centroid Oi, and the dominant point Dl
i of Pi

PME Possibly matched edge

TME Truly matched edge
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type recognition. Edge recognition determines

which edge pattern the current edge corresponds

to, i.e., L, C or V . For the edge Emni , if the distance
from the point DM to the line l is smaller than the
predetermined threshold value, it is considered to

be L (straight line). Otherwise, if DM is on the left
side when tracing the edge from the start-point to

the end-point clockwise, it is considered to be V
(convex edge), if on the right, it is C (concave

edge). Note that l is the line determined by the
start-point and end-point of the edge in question,

and DM is the most deviant boundary point from

the line l. After the edge recognition, we obtain a
four-letter string for every piece, which comprises
‘‘L’’, ‘‘C’’, and ‘‘V ’’. The object of the jigsaw piece
recognition is to perform the matching between

the four-letter string of the jigsaw piece in question

and those of models in SM. If ‘‘S1S2S3S4’’ is the
four-letter string of the jigsaw piece in question,

the details of the matching are as follows. We take

the four-letter string of the first model in SM, and

perform the matching with ‘‘S1S2S3S4’’, ‘‘S2S3S4S1’’,
‘‘S3S4S1S2’’, and ‘‘S4S1S2S3’’. If the matched string
is found, the piece in question is thought of as the

same type as that one in SM. Otherwise, move to

the next model in SM and repeat the above match-

ing. This operation is repeated until the matched

model is found.

Step 4. Perform the boundary shape matching

to identify candidates for neighboring pieces.
The details will be described in Section 3.1.

Step 5. Perform the image merging between the

current piece and all candidates.

The details will be related in Section 3.2.

Step 6. Based on the results of step 4 and 5, the

connection relationships among the jigsaw pieces

are recovered.

Section 3.3 gives details.

3.1. Jigsaw piece boundary shape matching

The proposed algorithm combines boundary

shape matching and image matching (image

merging) with a cyclic ‘‘growth’’ process of trying

to place pieces in their correct positions. This

section relates to the partial boundary shape
matching, the image merging will be explained in

the next section, and the cyclic ‘‘growth’’ process

of trying to place pieces in their correct positions

will be handled in Section 3.3.

A computer performs the partial boundary

curve matching process by using a clockwise jig-

saw piece edge and counterclockwise jigsaw piece

edge. For Pi, Pj 2 SP (i 6¼ j, i, j ¼ 0; 1; . . . ;N � 1),
the boundary shape matching between these two

pieces is shown below (note that the boundary cure

is given by discrete x- and y-coordinates in a

Cartesian coordinate system). We take the clock-

wise edge Ek;kþ1i (k ¼ 0, 1, 2, 3, modulo 4) of Pi and
the counterclockwise edge bEEm;mþ1j (m ¼ 0, 1, 2, 3,
modulo 4) of Pj; if their edge types satisfy any
connection relationships defined in jigsaw piece
model table, the matching between them is per-

formed. Otherwise, we try other edges of Pj that
can be mated. The matching between Ek;kþ1i andbEEm;mþ1j is described as follows. bEEm;mþ1j is translated

along the X - and Y -axis so that its start-point
overlaps with the start-point ðxki ; yki Þ of E

k;kþ1
i . The

displacements of X - and Y -axis are given by

DxðEk;kþ1i ; bEEm;mþ1j Þ ¼ xki � xmj ð1Þ

DyðEk;kþ1i ; bEEm;mþ1j Þ ¼ yki � ymj ; ð2Þ

where ðxki ; yki Þ are the coordinates of the start-point
of Ek;kþ1i , and ðxmj ; ymj Þ are the coordinates of the
start-point of bEEm;mþ1j . The edge bEEm;mþ1j is rotated

counterclockwise so that the line determined by its

start-point and end-point overlaps with that de-

termined by the start-point and end-point of the

clockwise edge Ek;kþ1i . The rotation angle is given

by

uðEk;kþ1i ; bEEm;mþ1j Þ ¼ tan�1
ymþ1j � ymj
xmþ1j � xmj

� tan�1 y
kþ1
i � yki
xkþ1i � xki

ð3Þ

where ðxkþ1i ; ykþ1i Þ are the coordinates of the end-
point of Ek;kþ1i , and ðxmþ1j ; ymþ1j Þ are the coordinates
of the end-point of bEEm;mþ1j . The matching error is

defined as

eðEk;kþ1i ; bEEm;mþ1j Þ ¼
Z Z

X
dxdy ð4Þ

where X is the region circled by the clockwise edge
Ek;kþ1i and the counterclockwise edge bEEm;mþ1j .
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For the digital jigsaw boundary curve, Eq. (4)

can be rewritten as the sum of area surrounded by

the boundary point pair on Ek;kþ1i and that onbEEm;mþ1j , plus the difference between the lengths of

these two edges, multiplied by a weighting coeffi-

cient. That is,

eðEk;kþ1i ; bEEm;mþ1j Þ ¼
Xk

p¼0;q¼0
ðSDðp;pþ1;qÞ þ SDðq;qþ1;pþ1ÞÞ

þ W 	 jLk;kþ1i � Lm;mþ1j j ð5Þ

where k is the smaller of the two edge lengths, that
is, k ¼ minfLk;kþ1i ; Lm;mþ1j g, W is a weighting coef-

ficient (at present it is set at 100), SDðp;pþ1;qÞ and

SDðq;qþ1;pþ1Þ are the areas of the triangles formed by

the boundary points p, p þ 1, and q; q, qþ 1, and
p þ 1; respectively, p is the boundary point on edge
Ek;kþ1i starting from Dk

i , and q is the boundary
point on edge bEEm;mþ1j corresponding to p. The areas
of the triangles are computed as follows (refer to

Fig. 1),

SDðp;pþ1;qÞ ¼ ðypj � ypþ1j Þxqi � ðxpj � xpþ1j Þyqi
þ ðxpj � xpþ1j Þypj � ðypj � ypþ1j Þxpj ð6Þ

SDðq;qþ1;pÞ ¼ ðyqi � yqþ1i Þxpþ1j � ðxqi � xqþ1i Þypþ1j

þ ðxqi � xqþ1i Þyqi � ðyqi � yqþ1i Þxqi ð7Þ

Ek;kþ1i 2 SEi of Pi (k ¼ 0, 1, 2, 3, modulo 4) is
matched with 8bEEm;mþ1j 2 SÊEj of Pj 2 SP (m ¼ 0, 1, 2,
3, modulo 4), and the matching error is calcu-

lated according to Eq. (5). The edge correspond-
ing to the smallest matching error is considered to

be the possibly matched edge (PME) between

Ek;kþ1i of Pi and those of Pj. This is performed for
8Pj 2 SP (j 6¼ i, j ¼ 0; 1; . . . ;N � 1), then all

PMEs between Ek;kþ1i of Pi and those of Pj 2 SP
(j 6¼ i) are obtained. All PMEs of Ek;kþ1i of Pi
are sorted according to the matching error, from

small to big. The top M of the sorted PMEs are

thought of as the truly matched edge (TME) can-

didates.

The above process is applied to 8Pi 2 SP
(i ¼ 0; 1; . . . ;N � 1), and the top M TME candi-

dates of the four edges of Pi are obtained. One of
the TME candidates for each edge will be deter-
mined as the TME by employing the image

merging method which will be described in the

next section. At present, M is set at 6. Notice that

‘‘L’’ type edge does not have a TME.

3.2. Image merging

The purpose of image merging is to determine
the TME from TME candidates. This is based on

the integration of image features.

3.2.1. Integration degree of image features

The integration degree of image features is de-

fined from the separability of image features. If we

suppose a region U of an image can be classified

into sub-region U1 and U2, the separability of im-
age features is defined as (Otsu, 1980),

g ¼ r2b
r2T

ð8Þ

r2b ¼ n1ðP 1 � PmÞ2 þ n2ðP 2 � PmÞ2 ð9Þ

r2T ¼
Xn
i¼1

ðPi � PmÞ2 ð10Þ

where n1 and n2 are the number of image pixels in
U1 and U2, respectively, n ¼ n1 þ n2, P 1, P 2, and Pm
are the average of the luminance in U1, U2, and U,
correspondingly, Pi is the luminance at ith pixel,
and rT is the variance in U. g lies in the range
0 < g6 1:0. If U1 and U2 can be separated com-

pletely, g ¼ 1:0. If U1 and U2 cannot be separated,

then g is near to 0. Pi can be the saturation, hue,Fig. 1. Edge matching.
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texture, and so on, instead of the luminance, at ith
pixel.

Generally, for the n standardized image fea-
tures, the separability is defined below (Fukui,

1997)

g ¼
Xn

f¼1
r2b

Xn

f¼1
r2Tf

,
ð11Þ

r2f ¼ n1ðP1f � Pmf Þ2 þ n2ðP2f � Pmf Þ2 ð12Þ

r2Tf ¼
Xn
i¼1

ðPif � Pmf Þ2 ð13Þ

where P1f , P2f , and Pmf are the average of the
feature f in U1, U2, and U, respectively, and rTf is
the variance of image feature f (f ¼ 1; . . . ; n) in U.
The value of g in Eq. (11) also lies in the range
0 < g6 1:0.
From Eq. (11), the integration degree of image

features is defined as

q ¼ 1� g: ð14Þ
If R1 and R2 can be merged completely, q takes

a value near to 1.0. If U1 and U2 cannot be merged,

q is equal to 0.
q is used to determine the TME from the TME

candidates. Details are given in the next section.

3.2.2. Image merging

Let us employ Fig. 2 to explain the image

merging between jigsaw pieces. According to the

boundary shape matching, as described in Section
3.1, one TME candidate of E120 of P0 is E

23
1 of P1 as

shown in Fig. 2(a). However, we cannot say defi-

nitely say that E120 of P0 can be connected to E
23
1 of

P1 because the shape information is not sufficient.
We must also check the images in the regions next

to the edge E120 and E
23
1 , that is, the regions R

12
0 and

R231 may or may not be merged according the in-
tegration of image features defined in Eq. (14).
Details are given below.

For the convenience of calculating the integra-

tion of image features between the image region

near the edge E120 and near E231 , R
12
0 and R231 are

divided into rectangular regions eRR120 and eRR231 as

shown in Fig. 2(b) respectively. ~RR120 and eRR231 are

separated into small regions having the same width

and height. The integration degree between eRR120
and eRR231 is defined as
�qq ¼ 1

f

Xf�1
i¼0

qi ð15Þ

f ¼ min L120
w

� �
;
L231
w

� �� 	
ð16Þ

where qi is the integration degree between ith small
region wi0 of eRR120 and wi1 of eRR231 , which is given in
Eq. (14); and f is the minimal number of small
regions in eRR120 and eRR231 ; w is the width of the small
region. The image features used in Eq. (14) are R-,
G-, and B-components. Certainly, other features
such as YIQ, Yuv, and so on, can also be em-

ployed.
Notice that when spreading the image data in

R120 to the rectangular region eRR120 , the image data is
copied along the normal line and the start-point is

not from a point on the edge but from a point d1
dots from the edge. This is shown in Fig. 3. Points

p1ðx1; y1Þ and p2ðx2; y2Þ are points d2 dots from the
point in question to the left and right along the

edge, and pcðxc; ycÞ is the mediate point of p1 and
p2. The coordinates of the point p3ðx3; y3Þ on the
normal line l2 are given by

x3 ¼ xc þ
d

P2 � P1k k ðy2 � y1Þ ðd16 d 6 d1 þ HÞ

ð17Þ

Fig. 2. Integration degree of image.
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y3 ¼ yc �
d

P2 � P1k k ðx2 � x1Þ ðd16 d 6 d1 þ HÞ

ð18Þ
where d is the distance from pc along the normal
line l2. At present, w, d1, and d2 are set at 10 dots, h

20 dots. Note that when performing image merg-

ing, because the boundary curve includes bound-

ary noise and the boundary curve may include

shades formed by the image input device, the

sampling of the pixels starts a small distance, i.e.,
d1, into the puzzle piece.
The edges in Fig. 4(b)–(g) marked by two red

lines are the TME candidates of the edge in Fig.

4(a) also marked by two red lines. These are ob-

tained by piece boundary shape matching. The

images near these edges in (a)–(g) are spread into

rectangular regions as shown in (h)–(n), respec-

tively. The integration degrees between the rect-
angle region in (h) and those in (i)–(n) are shown

in (o)–(t), correspondingly.

3.3. Recovery of connection relationships

TME candidates obtained in the previous sec-

tion are put into the jigsaw piece connectedness

Fig. 3. Image region used to calculate the integration degree.

Fig. 4. Edges in (b)–(g) marked by double red curves are six TME candidates for the edge also marked by double red curves in (a).

Image regions near the edges in (a)–(g) are converted to rectangular regions in (h)–(n). Degrees of image integration between (h) and

(i)–(n) are shown in (o)–(t).
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table. The connection relationships are recovered
according to this table. The format of the jigsaw

piece interconnected table is given in Table 4. The

first column, Cad, shows the candidate number

which is in repetition with length M , that is, the
first M shows the candidate number of the first

edge of P0, the second of the second edge of P0, and
so on. The second and the third columns, X1 and
Y1, are the piece and edge numbers of the piece in
question respectively; and the fourth and fifth

columns, X2 and Y2, are the piece and edge num-
bers of the neighbor of the piece in question. The

sixth column, xk, is the jigsaw piece boundary

shape matching error, which is ranked from small

to big. The seventh column, qk, is the integration
degree of the images between the regions near the

edge X1 of the piece Y1 and X2 of Y2. The eighth
column, sk, is the ratio between the boundary
shape matching error of kth candidate and that
of the first, that is, sk ¼ xk=x0, where k ¼ 0;
1; . . . ;M � 1.
The recovery of the connection relationships is

based on the following decision rules.

Rule 1: If the kth candidate ranks first, both in
the boundary shape matching error field and in the
integration degree field, the kth candidate is con-

sidered as the TME. Notice that first rank in the

matching error field means its matching error is

the smallest among the candidates, and the first

rank in the integration degree field means that its

integration degree is the largest.

Rule 2: If the mth candidate ranks first in the
boundary shape matching error field, nth candi-
date ranks first in the integration degree field

(m 6¼ n), and if sn is bigger than the threshold sthres,
the mth candidate is thought of as the TME. At
present sthres is determined experimentally and set
at 1.5.

Rule 3: If the sth candidate ranks first in the
boundary shape matching error field, the tth can-
didate ranks first in the integration degree field

(s 6¼ t), and if st is smaller than the threshold sthres,
then the tth candidate is thought of as the TME.
Rule 4: In other cases TME candidates are left

unsolved.

Moreover, because the jigsaw pieces are inter-

connected, the contents of jigsaw piece connect-

edness table can be corrected according to the
following correction rule.

Correction rule: The jigsaw piece connectedness

table is searched from top to bottom. If Pm�s kth
edge connects to the sth edge of Pn (n > m) ac-
cording to the decision rule 1, 2, or 3, then it can

be said that the sth edge of Pn is connected to the
kth edge of Pm. Therefore, for the first TME can-
didate of the sth edge of Pn, the piece and the edge
numbers of the neighboring piece, that is, X2 and
Y2, can be determined as Pm and k, respectively. Its
integration degree, that is, q0 can be set to 1.0, and
the matching error, i.e., x0, can be set to a positive

non-zero value as small as possible, e.g., 1.0. Next,

the jigsaw piece connectedness table is searched

from bottom to top, and above process is repeated.

In this way, the TME can be rescued from the
unsolved TME candidates.

After TMEs are determined, the connection re-

lationships among the jigsaw pieces can be recov-

ered as follows:

(1) Search the jigsaw piece connectedness table

and find the corner piece. Call the corner piece

be Pi, and put it into the buffer, and set the in-
dex c of the buffer to 0, and the number of jig-
saw pieces in the buffer n to 1. Then make the

Table 4

Format of jigsaw piece connectedness table

Cad X1 Y1 X2 Y2 xk qk sk

TME candi-

dates of 1st

edge of P0

0

1

..

.

M � 1

TME

candidates

of 2nd edge

of P0

0

1

..

.

M � 1
..
.

0

1

..

.

M � 1
..
.
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output image Iout, and initialize Iout with 0.
Copy the image of Pi to Iout.

(2) Find the neighboring piece for the kth edge of
Pi in the buffer, from the jigsaw piece connect-
edness table. If its neighboring piece, for exam-
ple Pj, is found, then Pj is translated and

rotated according to the displacements and ro-

tation angle obtained from Eqs. (1)–(3); the

image of Pj is pasted to Iout, and n is increased
by 1. Where the edge index, k, changes from 0
to 3.

(3) The operation in (2) is repeated for c from 0

to n.

In this way, the connection relationships among

the jigsaw pieces can be recovered.

4. Experiment result

We employed real-world images to test the al-
gorithm related above. The algorithms were im-

plemented on a Windows platform, and the

programming language was C++. An EPSON GT-

9500 scanner was used as the image input device.

Fig. 5 shows one of the five input images, and is

the input image with a white background. The

resolution of the scanner is set at 300 dpi, and the

size of each image is 1704	 1644	 3 bytes. This
image includes 16 canonical jigsaw pieces, one

corner piece (R2), six edge pieces (three E1 and
three E6), and nine interior pieces (one I0, five I2,
two I3 and one I4). Fig. 6 shows the piece recog-
nition results, where the extracted jigsaw pieces are

shown by the boundary curve, and are numbered

from P0 to P15 in the order of extraction, and the
centroids by ‘‘+’’. The detected corner points are
shown by ‘‘�’’ or ‘‘�’’, where ‘‘�’’ marks the start
corner point in accordance with those of jigsaw

piece models in Table 2. The recognized piece type

is written right after the piece number and ‘‘,’’ at

the centroids.

By applying the jigsaw piece boundary shape

matching and image merging as described in Sec-

tion 3, the connectedness table is obtained. The
size of the table is 64	M 	 4 (M is the number of

TME candidates). A portion of the connectedness

table for the input image in Fig. 5 is given in Table

5. The ninth column of Table 5 shows the applied
decision rule. There are 64 interconnected rela-

tionships in this table, among them there are eight

Fig. 5. One of the input images (white background).

Fig. 6. Extracted jigsaw pieces; corner points, orientation, and

piece type of each piece.
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‘‘L’’ edges that do not have neighboring pieces,
and there are eight pseudoedges because the jigsaw

pieces in Fig. 5 make up a portion of the whole

puzzle. By applying the decision rules, 46 of the

remaining 48 interconnected relationships can be

determined, and two are left unsolved. Intercon-

nected relationships determined by rules 1, 2, and

3 are 27, 10, and 9, respectively. By applying the
correction rule, the two unsolved interconnected

relations are rescued as shown in Table 5 marked

by the two arrow-lines. Therefore, the connection

relationships in input image Fig. 5 can be recov-

ered completely. The recovery process at steps 0, 3,

6, 9, and 14 is shown in Fig. 7.

Another experiment used the input image

shown in Fig. 8, and is one of the five input im-

ages. The resolution of the scanner was set at 200

dpi, the size of each image being 1268	 1642	 3
bytes. This image includes 25 canonical jigsaw

pieces, one corner piece (R1), eight edge pieces
(four E1 and four E6), and 16 interior pieces (one I4
and 15 I2). Fig. 9 shows the piece recognition re-
sults, where the extracted jigsaw pieces are shown

by the boundary curve, and are numbered from P0
to P24 in the order of extraction. Then a connect-
edness table is constructed by applying the

boundary shape matching and image merging.

The size of the table is 100	M 	 4. There are 100

Table 5

Connectedness table for input image in Fig. 6

C X1 Y1 X2 Y2 xk qk sk R

0 0 0 7 1 1989.3 0.66890 1.00 R2

1 0 0 5 3 2026.4 0.47689 1.02

2 0 0 13 0 2332.6 0.25023 1.17

3 0 0 9 1 2968.0 0.17238 1.49

4 0 0 1 3 3443.9 0.72644 1.73

5 0 0 11 1 3736.3 0.49098 1.88

..

.

0 0 3 9 2 1953.1 0.42560 1.00

1 0 3 13 1 2180.7 0.44246 1.12 R4

2 0 3 1 0 4305.5 0.40391 2.20

3 0 3 14 0 4310.3 0.46123 2.21

4 0 3 7 0 4584.3 0.44262 2.35

5 0 3 5 0 4999.5 0.39152 2.56

..

.
Correction rule

0 11 2 1 3 2139.2 0.33707 1.00

1 11 2 13 0 2367.4 0.53802 1.11 R3

2 11 2 7 1 2558.9 0.21289 1.20

3 11 2 0 1 2734.5 0.23092 1.28

4 11 2 9 1 3137.8 0.47419 1.47

5 11 2 5 3 3433.9 0.38821 1.61

..

.
Correction rule

0 13 0 12 1 1257.5 0.43268 1.00

1 13 0 5 0 2052.7 0.54184 1.63

2 13 0 4 3 2211.6 0.49541 1.76

3 13 0 15 2 2304.1 0.54444 1.83

4 13 0 0 0 2468.4 0.25630 1.96

5 13 0 11 2 3065.8 0.57924 2.44 R4

0 13 1 0 3 1617.9 0.43169 1.00 R2

1 13 1 11 3 4238.5 0.45921 2.62

..

.

b

b
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interconnected relationships in this table (omitted

here because it become very large); among them

are 10 ‘‘L’’ edges that do not have neighboring
pieces, and are 10 pseudoedges because the jigsaw

pieces in Fig. 8 are only a part of the entire puzzle.
For the remaining 80 interconnected relationships,

by applying the decision rules, 75 of them can be

determined, and 5 are left unsolved. Intercon-

nected relationships determined by rules 1, 2, and

3 are 41, 12, and 22, respectively. It is worth not-

ing that there is one mistake that arises from rule

1, 4 from rule 2, and 3 from rule 3. However, by

applying the correction rule, these mistakes can

be corrected. Two unsolved interconnected rela-

tions are rescued by the correction rule, and an-

other three are left undetermined. Therefore, for

the input image in Fig. 8, 96% of the connec-
tion relationships can be recovered. The recovery

process at step 0, 5, 10, 15, and 23 is shown in

Fig. 10.

The experiments are performed on a Windows

2000 machine with a Pentium III CPU and 128

MB memory, working at 600 MHz. The compu-

tation time is given in Table 6. The computation

Fig. 7. Recovery process of the connection relationships in the input image in Fig. 5 (�Disney). Repetition times: (a) c ¼ 0, (b) c ¼ 3,
(c) c ¼ 6, (d) c ¼ 9, (e) c ¼ 14.
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time in experiment 1 and 2 cannot compare di-
rectly because the resolution of the scanner is set

differently. The ‘‘combination explosion’’ is alle-

viated by employing the jigsaw puzzle models as

given in Section 2. We also tested other jigsaw

puzzles. If the whole picture of the jigsaw puzzle

is a natural scene, the algorithm gets the mis-

take solution. This is because, (i) many pieces

have similar textures and the textures are very
delicate; (ii) the image integration degree in Eq.

(15) is defined at the large-scale, i.e., along the

whole edge; (iii) the decision rules are not suffi-

cient. Moreover, if the resolution of image input

device is low, the algorithm fails because this

will lead to missing texture on each piece. This

can be improved by introducing local image

integration degree, employing higher resolution
images (over 600 dpi) and utilizing more deci-

sion rules. All these will be done in a succeeding

work.

5. Conclusions

This paper discusses a computational solution

of jigsaw puzzles. The experiments were performed

with real-world jigsaw puzzle images. The experi-

ment results show that our method was successful.

This method of solving jigsaw puzzles can also be

applied in intelligent robot assembly systems, and

in map matching.
In this method, we categorized canonical jigsaw

pieces into 18 patterns. This greatly reduced the

computation time and simplified the process. This

method includes jigsaw piece extraction, corner

point detection, and piece type recognition in the

first phase, and boundary shape matching, image

merging, and connectedness recovery in the second

phase.
The summary of the first phase is given in (Yao

et al., 2002). The following is a summary of the

Fig. 8. One of the input images (white background). Fig. 9. Extracted jigsaw pieces; corner points, orientation, and

piece type of each piece.
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second phase. The computation time of boundary

shape matching is given by

Tshape�match ¼ tmatch 	Oð16	 N 	 ðN � 1ÞÞ ð19Þ
where N is the number of jigsaw pieces in the input
image, and tmatch is the matching time between two
edges of two different pieces. tmatch contains the time
for copying the coordinates of the points on edges,

for translating and rotating the coordinates of an

edge in matching, and for calculating the matching

error. It is directly proportional to the edge length,
which depends on the size of the input image. All

edges are matched to each other to get the TME

candidates. The matching results are sorted by

the matching error from small to big, and the

top Mð¼ 6Þ of them are considered as the TME

Table 6

Computation time to solve the jigsaw puzzles by computer and

people

Ex 1 Ex 2

Step 1 (ms) 3985 4066

Step 2 (ms) 11,928 10,765

Step 3 (ms) 120 1032

Step 4 (ms) 4647 7370

Step 5 (ms) 10,905 11,817

Step 6 (ms) 30,173 30,895

Total (ms) 61,758 65,945

Fig. 10. Recovery process of the connection relationships in the input image in Fig. 8 (�Disney). Repetition times: (a) c ¼ 0, (b) c ¼ 5,
(c) c ¼ 10, (d) c ¼ 15, (e) c ¼ 23.
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candidates. If the N becomes large, the value of M
should be also set larger. When calculating the

matching error between the edges of two different

jigsaw pieces, the weighting coefficient W (in Eq.

(5)) is employed. Eq. (5) considers two factors––the
area surrounded by two edges and the difference in

lengths of the edges of two different pieces. The

weighting coefficient W balances the affects of these

two factors. Let us look at the following case where

W is set at a very small value, W ¼ 0. The edges of
two pieces may have different lengths, but the

concave portion of an edge matches the convex

portion of another edge completely. In this case,
these two edges may be selected as TME because of

W ¼ 0. This is obviously wrong. On the other hand,
if W is set at very big value, the following case can

be considered: For two edges of differing pieces,

their lengths being almost the same (the difference

between them is very small), and the concave por-

tion of an edge matches the convex portion of an-

other edge completely, the two edges might not be
selected as TME because W is too big. This is also

wrong. The setting of W is very important, and is

determined experimentally. At present it is set at

100. We also tested algorithm with 150 and 200, the

experiment results were the same.

The object of image merging is to calculate the

integration degree of image in the region near the

edge in question and those of the TME candidates.
The computation time is given by

Timage�merge ¼ tmerge 	OðMÞ ð20Þ
where tmerge is the time for calculating the inte-
gration degree of the images in the regions near the

edge in question and those near its TME candi-

dates. It includes the time for spreading the image

in the region along the edge into rectangular re-

gions, and for calculating the integration degree
between the corresponding small regions of two

rectangular regions. The small region�s width is 10
dots, and its height is 20 dots. The experiment

results show that they are appropriate. The values

may be changed for the jigsaw puzzle images at

different resolutions.

We made three decision rules and one correc-

tion rule to determine the TME from its candi-
dates, based on the boundary shape matching

error and the image integration degree. These two

parameters are criteria with very different charac-

teristics. The image integration degree ranges from

0.1 to 1.0, however, the value of the boundary

shape matching error is usually very big (for the

best matched edges, its value is 0). The parameter

sthres intends to balance these two parameters. If
sthres is set too small, for example a value near to 1,
it is difficult to give the priority to the boundary

shape matching error when determining TME.

Similarly, If sthres is set too big, for example a value
larger than 2, it is hard to give the priority to the

image integration degree when deciding TME. At

present, it is determined experimentally, and set at

1.5. And if the TME cannot be determined by
using rules 1–3 and a correction rule, then TME

candidates are left unsolved. If an edge of a piece is

best fit at two different locations, it is necessary to

check other edges of that piece. For large size

jigsaw puzzles, these rules need to be improved.

This will be done in succeeding work. The com-

putation time for recovering the connection rela-

tionships among jigsaw puzzles is given by

Trecovery ¼ trecovery 	OðNÞ ð21Þ
where trecovery is the time for copying the image data
of a jigsaw piece from the input image, rotating

this image data and putting them into the output

image. The iteration times are smaller than N � 1,
where N is the number of puzzle piece, because

multiple interconnection relationships may be re-
covered in each iteration.

Although the TMEs cannot be determined at a

hundred percent, the jigsaw puzzle can still be

solved completely. For example, in Fig. 10(d), the

neighbor piece of the third edge of P5 cannot be
determined from its TME candidates; however, it

can be determined from the TME candidates of

the first edge of P19, as shown in Fig. 10(e).
The gaps marked by the white circles in Fig.

7(e) (represented by DE1 and DE2) and Fig. 10(e)
(DE3 and DE4) are the errors in the recovery of the
connection relationships among jigsaw pieces.

There are two factors causing these errors. Firstly,

because the image is scanned from top to bottom,

the brightness of the edges on the top-side and

bottom-side are different, and shadows appear on
the bottom-sides (see Figs. 5 and 8), and this gives

rise to the deformation of boundary curves. Sec-
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ondly, for an edge of a jigsaw piece, when it

matches best with an edge of another piece, it may

be that its other edges maybe are not in the best

matched orientation with edges of other pieces.

This may cause an error in piece orientation. The

gaps become larger and larger as the recovery
process continues. This is because the errors are

integrated. The gaps can be minimized by making

the current piece fit with its four neighboring pie-

ces at best orientation. This is our future goal.

At present, we tested this method by using an

image containing dozens of pieces. It is also nec-

essary to test it by using images containing more

pieces. As an application of the method to solve
the jigsaw puzzles, it can be directly applied to

intelligent robot assembly systems. This is left to

do in the future.
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