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Abstract

Many factors could influence the allometric scaling exponent £ estimation, but have not been explored systematically. We investigated
the influences of three factors on the estimate of ff based on a data set of 626 species of basal metabolic rate and mass in mammals. The
influence of sampling error was tested by re-sampling with different sample sizes using a Monte Carlo method. Small random errors were
introduced to measured data to examine their influence on parameter estimations. The influence of analysis method was also evaluated
by applying nonlinear and linear regressions to the original data. Results showed that a relative large sample size was required to lower
statistical inference errors. When sample size n was 10% of the base population size (n = 63), 35% of the samples supported = 2/3,
39% supported § = 3/4, and 15% rejected f = 0.711, even though the base population had a f = 0.711. The controversy surrounding the
estimation of f§ in the literature could be partially attributable to such small sample sizes in many studies. Measurement errors in body
mass and base metabolic rate, especially in body mass, could largely increase alpha and beta errors. Analysis methods also affected
parameter estimations. Nonlinear regressions provided better estimates of the scaling exponent that were significantly higher than these
commonly estimated by linear regressions. This study demonstrated the importance of the quantity and quality of data as well as analysis
method in power law analysis, raising caution in interpreting power law results. Meta-data synthesis using data from independent studies
seems to be a proper approach in the future, but caution should be taken to make sure that such measurements are made using similar
protocols.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction 2006; Reich et al., 2006). While the physical and biological

basis for power law phenomena are still not entirely clear

A power law appears widely in many different research
disciplines such as physics, biology, and earth and
planetary sciences (Newman, 2005). Its application has
also caused considerable debate. Arguments over the
allometric scaling exponent f in the power law Y = Y M”
have intensified during recent years, especially whether f
equals 3/4, 2/3 or some other number for physiological
traits (e.g., Dodds et al., 2001; White and Seymour, 2003,
2005b; Koztwski and Konarzewski, 2004, 2005; Li et al.,
2004; Brown et al., 2005; West and Brown, 2005; Glaizer,
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(Feldman, 1995; Agiitter and Wheatley, 2004; Farrell-Gray
and Gotelli, 2005; Hulbert and Else, 2004; Suarez and
Darveau, 2005; van der Meer, 2006), the controversy in f3
may also be induced by the empirical estimation of the
power law function. § was often estimated using algorithms
based on a limited number of samples of animals or plants
on which the independent variable (e.g. mass) and
dependent variable (e.g. basal metabolic rate (BMR)) were
measured. During these processes, at least three factors
could affect the estimation of 5: sample size, measurement
error and analysis method. However, to our knowledge
how these factors influence power law analysis has not been
explored systematically.

Sampling size could influence the variability of para-
meter estimation and varies from a few to several hundred
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species in the literature (Smith, 1984; Savage et al., 2004).
But very few studies have been conducted on how sampling
size might influence the scaling exponent estimation. White
and Seymour (2005a) reported that a minimum sample size
of 50 drawn from a data set of 571 species was required to
minimize the effect of skewed data introduced by
influential small or large species, and 150 samples were
necessary to distinguish f# =2/3 from 3/4. Measurement
errors on both mass and basal metabolic rate could also
influence parameter estimates. A study of mineralization
showed that small errors in the data could cause serious
errors in parameter estimations (B6ttcher, 2004). To date,
comparisons of analysis methods in power law analysis has
mostly focused on linear regressions of log-transformed
data (Beauchamp and Olson, 1973; Miller, 1984; Niklas,
2004). Reduced major axis (RMA) regression was sug-
gested to fit linear regression, but in practice, the ordinary
least squares (OLS) method has typically been used. By
comparing linear and non-linear approaches, Kaitaniemi
(2004) also demonstrated that much of the discrepancy in
the literature may be an artifact caused by the methods.
However, no study in practice has used nonlinear least
squares method (NLS) and compared it with other
methods.

We investigated the influences of sampling size, measure-
ment error, and analysis method on estimated scaling
exponents based on a data set of 626 pairs of species-
averaged BMR and mass in mammals (Savage et al.,
2004). Our objectives were to: (1) demonstrate the influence
of sample size on alpha and beta errors in statistical
inference and estimate the minimum requirement of sample
size to lower these errors below 0.05; (2) examine the
influence of errors in measured data on alpha and beta
errors; and (3) evaluate the performance of nonlinear
regression and its influence on estimation of the scaling
exponent.

2. Materials and methods
2.1. Base data set

A recently compiled data set of species-averaged BMR
and body mass of mammals by Savage et al. (2004) was
used in this study. To control the quality of data set,
Savage et al. (2004) checked the original reports, eliminated
duplicated data, and averaged values for the same species.
The complete data set includes N = 626 species. The
properties of body mass and metabolic rate distributions
have been carefully studied by Savage et al. (2004). This
data set is heavily biased in favor of small species, due to
the fact that small species are more abundant than larger
species and easy to measure. We considered this data
set as a base population and calculated the parameters
Yy =0.021 and f =0.711 using the original data as in
Savage et al. (2004). All data analyses in this study were
based on, or derived from, this data set.

2.2. Influence of sample size

The influence of sampling error was tested by re-
sampling with different sample sizes from the base
population using a Monte Carlo approach. Sample
size was selected as n=1/20, 1/10, 1/5, 1/3, 1/2 of
population size N. For each sample size, n observations
were randomly selected from the population as one sample
and this process was repeated 500 times. For each sample,
parameters Y, and f were estimated using the OLS method
on log-transformed data as in Savage et al. (2004).
Quartiles of parameter estimate b of scaling exponent f§
from 500 samples under different sample sizes were
displayed.

Similarly, the relationship of probability for accepting a
certain null hypothesis § = fy (i.e., fo = 3/4, 2/3 or 0.711)
with sample size was constructed. The sample size n
increased from 6, 7,..., to 500. For each sample size n, 500
samples were drawn from the base population. For each
sample, the frequency and probability that the null
hypothesis f=3/4, f=2/3, or f=0.711 was accepted
were calculated.

2.3. Influence of measurement error

The influence of measurement error on parameter
estimations was analyzed by adding small random errors
to the measured data. Virtual data sets were created using
body mass in the base data set, with given parameters
Yy = 0.021 and f = 0.711, assuming certain measurement
errors in BMR and/or mass as described below.

There were three steps in this analysis. (1) BMR
calculation. Given parameters Y, and f, BMR was
calculated based on body mass of each species in the base
data set; (2) Measurement error determination. Error
distributions of BMR and body mass were assumed to
follow normal distributions with mean u = 0 and standard
deviations ¢ equal to small percentages of the BMR and
observed mass values; given the error distributions of BMR
and mass, random errors were drawn from the normal
distributions for each observation and added to the
calculated BMR and measured mass. (3) Parameter
estimation. For each virtual data set, we estimated
parameters using the OLS method as in Savage et al.
(2004).

The effects of measurement error on the parameter
estimation were examined using different combinations of
measurement error settings (i.e., different ¢ values for
BMR and mass). The probability for accepting f = 3/4,
2/3, or 0.711 was estimated by generating 500 samples for
each combination of measurement errors of BMR and
mass.

Probability was also estimated for accepting the null
hypothesis f§ = 3/4, 2/3, or 0.711, given a population with
B =3/4 or 2/3 instead of f =0.711, when the standard
deviations of BMR and mass were set as 20% and 40% of
their respective values.
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2.4. Influence of analysis method

The power law is a simple, nonlinear regression
equation. At least two approaches can be used to estimate
its parameters. One is nonlinear regression analysis,
minimizing an objective function by an iterative process.
Certain optimization algorithms, such as Gauss—Newton
method, can be applied for this iteration. Another is
linear regression analysis on the transformed data.
Taking the logarithms of both sides of the equation,
we obtain a linear regression equation, Y = Yy +bM,
where Y’ = log(Y), M’ = log(M), and Yy = log(Yy). In this
case b is the estimate of . Thus, linear regression can be
applied to obtain the parameter estimates Y, = exp(Yy')
and b.

The influence of analysis methods was evaluated by
re-analyzing the base data set using nonlinear and
linear regression methods. NLS methods, both non-
weighted (NLS) and weighted nonlinear (WNL), were
applied with the Gauss—Newton optimization algorithm.
To determine which weight was the best for WNL, we
used Furnival’s Index of Fit (Furnival, 1961). The weight
was set as the reciprocal of body mass raised to various
powers: 1/M'?, 1/M, 1/M*? and 1/M?. Since 1/M"?
provided the smallest FI (results not shown), we selected
1/M'? as weight in this study. For the linear regression,
OLS, major axis regression (MAR), and RMA methods
were conducted. The methods were evaluated quantita-
tively by examining the bias and mean square error.
Bias and the root mean square error (RMSE) were
calculated as

Y(Yi—Y)) S (Yi—Yi)/n
bias=-+———, bias% = +—x—,
n > Yi/n
(Y- 1)
RMSE=\+—
n—2
S (Yi— Y /(n—2)
RMSE% = ! =
Z Y,-/n

All analyses were conducted using SAS (Hui and
Jiang, 1996; SAS Institute Inc. Cary, NC, USA). SAS
IML was used as a program tool and for linear regression
analysis (OLS). NLIN procedure was used for nonlinear
regression analysis. NLP procedure was used for MAR
and RMA with appropriate minimization criterion.
We also used TableCurve to explore the influence of
different methods of both linear and nonlinear regression
analyses (TableCurve 2D V5.01, SYSTAT software Inc.,
2002).

3. Results
3.1. Influence of sample size

The range of the parameter estimate b decreased as
sample size n increased (Table 1). When the sample size was
small, e.g., n=31 (i.e., 1/20 of the population size
N = 626), b ranged from 0.578 to 0.795 with a median of
0.708. When n was increased to 1/2 of the population size
(n = 313), the range of b was much smaller and it ranged
between 0.685 and 0.733 with a median of 0.711.

The probability of accepting a certain null hypothesis
B = B, was also strongly influenced by sample size (Fig. 1).
When n =6, the probability to accept the true null
hypothesis = 0.711 was 0.83, and the alpha error (i.e.,
the probability of rejecting a true null hypothesis) was
therefore 0.17. As n increased, the probability to accept
B =0.711 increased linearly. When n was larger than 380
(i.e., more than 61% of the population size), the alpha
error became smaller than 0.05.

Beta errors (i.e., the probabilities of accepting the false
null hypothesis f = 3/4 or 2/3) were very high when n was
as low as 6, but decreased sharply as » increased (Fig. 1).
When n = 63, beta errors for f = 2/3 and 3/4 were 0.35 and
0.39, respectively (Table 2). When sample sizes were larger
than 170 and 185 (i.e., 27% and 30% of population size),
the beta errors for f =2/3 and f = 3/4 became less than
0.05.

3.2. Influence of measurement error

The probability of accepting the true null hypothesis
p =0.711 decreased (i.e., alpha error increased) as the
measurement errors of BMR and mass increased (Fig. 2a).
When the measurement error of BMR was small, the
probability decreased sharply as the measurement error of
mass increased. As the measurement error of BMR
increased, the probability decreased slowly at first, but
more quickly as it approached zero. When measurement
errors of both BMR and mass were high, the probability
tended towards zero, and alpha error became very high.

The probability of accepting f = 3/4 (i.e., beta error)
(Fig. 2b) showed a similar pattern as the beta error to

Table 1
Distribution of parameter estimation b of 500 samples drawn from a
population with = 0.711 at different sample sizes

Quantile Sample size
20 31 63 125 313

100% Max 0.814 0.795 0.776 0.753 0.733
95% 0.771 0.763 0.746 0.737 0.724
75% 0.737 0.731 0.725 0.722 0.718
50% Median 0.709 0.708 0.710 0.711 0.711
25% 0.679 0.681 0.695 0.700 0.706
5% 0.624 0.641 0.667 0.683 0.697
0% Min 0.559 0.578 0.582 0.663 0.685
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Fig. 1. Influence of sample size on the probability of accepting the null hypothesis f = 0.711, p = 2/3, and = 3/4. For § = 0.711, 1-probability is the f
error (i.e., reject a true null hypothesis f = 0.711). For f = 2/3 or § = 3/4, probability is the o error (i.e., accept a false null hypothesis f = 2/3 or § = 3/4).

Table 2

Frequency and probability of accepting the null hypothesis f = 2/3, 0.711
or 3/4 of 500 samples drawn from a population with f = 0.711 at sample
size n = 63

Acceptance of null hypothesis

p=2/3 p=0.711 p=3/4
Frequency 177 427 195
Probability 0.35 0.85 0.39

accept f=2/3 (Fig. 2¢). The measurement error of
body mass showed a larger influence on the probability
than the measurement error of BMR. Interestingly, beta
errors also decreased when measurement error of mass was
very high.

When the measurement errors were 20% and 40% of
their mean values of body mass and BMR, respectively, the
alpha error of rejecting the true null hypothesis f = 2/3 was
0.14 (i.e., 1-0.86), and the beta error of accepting the
false null hypothesis f = 0.711 was 0.17 (Table 3). When
the samples were drawn from a population with f = 3/4,
the alpha error of rejecting the correct null hypothesis
p =3/4 was 0.15 (i.e.,, 1-0.85), the beta error of accep-
ting f=2/3 was 0.08, and the beta error of accepting
p =0.711 reached 0.49. Both alpha and beta errors were
quite large.

3.3. Influence of analysis method

Parameter estimates for 4 by nonlinear regression were
significantly higher than those by linear regression methods
(Table 4). Among the five methods applied here, WNL had
the smallest bias, % bias, RMSE, and % RMSE. Only

MAR marginally accepted the null hypothesis = 3/4. All
other methods showed that neither f =2/3 nor f =3/4
should be accepted.

Estimated BMR of regression curves were compared
to the measured values. Estimated BMR by linear
regressions were corrected using correction factor
CF = exp(MSE/2) for bias (Miller, 1984). Compared to
measured values, curves back transformed from linear
regressions obviously underestimated BMR when body
mass was large (Fig. 3). Even when body mass was small,
nonlinear regression curves fit the data better than linear
regression methods did.

Our analysis was focused on the parameter estimates in
the power law function. We also fit different two-parameter
functions using TableCurve. Of 57 implemented in Table-
Curve, 36 functions fit the data well with R? larger than
0.50. Among these functions, the best functions included
power, logarithmic, and linear functions, with R? larger
than 0.98.

4. Discussion

Three interesting findings from this study demonstrated
the uncertainties in allometric scaling exponent estimation
and raised some cautions in interpreting power law results.
One was that quite large sample size was required (up to
61% of population size) in order to obtain a reliable
estimate of the allometric scaling exponent for the
population. When the sample size was small, as in most
studies, it was quite possible to erroneously accept a false
null hypothesis (i.e., f = 3/4 or f =2/3). Secondly, non-
linear regression methods generally had the least bias and
model error but produced estimates of the scaling exponent
that were significantly higher than 2/3 or 3/4 and higher
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Fig. 2. Influence of measurement errors on the probability of accepting the null hypothesis f = 0.711 (a), f = 3/4 (b) and f = 2/3 (c) when 500 samples

were drawn from a population with f =0.711. For # = 0.711, 1-probability is the f error (i.e., reject a true null hypothesis f = 0.711). For = 2/3 or
p = 3/4, probability is the o error (i.e., accept a false null hypothesis f = 2/3 or f = 3/4).

than estimates from linear regression methods. Thirdly,
measurement errors of both metabolic rate and body mass
further increased alpha and beta errors; this fact poses
additional challenges for interpreting power law results and
highlights the importance of quality control of measure-

ments. Based on these results, it is difficult to conclude with
strong support that a universal scaling exponent f of either
3/4 or 2/3 exists. Considering the large uncertainty in
power law analysis, future research efforts that focus on

theoretical development would complement ongoing
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Table 3

Probability (and frequency) of accepting the null hypothesis § = 2/3, 3/4,
and 0.711 from 500 samples drawn from a population with parameter
p=2/3or f=3/4

Population parameter Acceptance of null hypothesis

B=2/3 B=3/4 B=0.711
p=2/3 0.86 (429) 0.01 (4) 0.17 (83)
B=3/4 0.08 (41) 0.85 (424) 0.49 (244)

Measurement errors (i.e., standard deviations) were 20% and 40% of the
mass and basal metabolic rates, respectively.

Table 4
Comparison of analysis methods

efforts that just validate or disprove a scaling exponent /3
using empirical methods.

4.1. Influence of sample size

A surprising finding in this study was that more than
61% of the total base population size needed to be sampled
in order to reduce both alpha error and beta error below
0.05, based on the largest data set of mammalian metabolic
rate and body mass compiled so far. Since most power law
analysis to date has focused on whether a specific f = f

Method Objective function (Q)  Calculation of b

Estimated 95% confidence Bias Bias RMSE RMSE
b interval % %

Direct methods using original data (nonlinear regression)
NLS  53(Yi — YoM}y’
i
WNL S wy(Y; — YOM?)Z
7 M2

Indirect methods using transformed data (linear regression)
Sy

OLS  S(¥j—[¥p+bM)*  b="1M
1 L Y/

MAR (oD HOMIY o L fa g (o ad,] ) 0T

= Sy — Sy
1407 2y U TN
RMA Z(Y;. — Y+ bM])? I sy >0
: b Sw
i b= Sy’ .
—— if sy <0
Sy

1. Nonlinear least squares method, iteration 0.865

2. Weighted least squares method, iteration w; =1/ 0.842

0.856-0.874 0.74 0.07 9.66 295

0.832-0.851 0.20 0.02 991 295

0.711 0.699-0.724 2.54 028 47.1 158

0.696-0.752 2.19 024 430 14.1

0.729 0.710-0.748 1.150.11 36.1 11.2

Y =In(Y), M’ = In(M), and Yy = In(Y,); NLS, nonlinear least squares method; WNL, weighted nonlinear least squares method; OLS, ordinary least
squares method; MAR, major axis regression; RMA, reduced major axis regression. RMSE, root mean square error.
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should be accepted, beta error seems more problematic and
should be minimized. To lower the beta error of accepting
a false hypothesis of f = 2/3 or f = 3/4 below 0.05, at least
27% and 30% of the base population should be sampled.
Otherwise, both f=2/3 and f = 3/4 could be accepted
(when sampled from a population of = 0.711). These
results may help the scientific community understand why
there are so many different allometric exponents estimated,
and controversial findings reported in the literature, as
most researches typically focuses on a small number of
species (Dodds et al., 2001). Smith (1984) compiled a table
of 60 power-law functions, and showed that the sample size
ranged primarily from 7 to 69, with only two studies with
sample sizes that were ~100. With such small sampling
sizes, the chance of a beta error is very large. Some recent
synthesis studies have used relatively more data compiled
from the literature, but still more data are needed.

Our conclusion on sample size requirements is different
from that of White and Seymour (2005a) who used a
similar approach but focused on the minimum sample size
to distinguish between the exponents of 2/3 and 3/4. While
both studies showed that the standard deviation of the
estimated exponent decreased as sample size increased, we
suggest that this evidence (and the change of model
exponent with sample size) could not be used to determine
the minimum sample size. Theoretically, if the scaling
exponent is an unbiased estimate of the population
exponent, then the mean estimated exponent should be
equal to the population exponent, even when the sample
size is small. The standard deviation of the estimate (i.e.,
standard error) is a function of sample size #n in a form of
a/\/n as shown in Fig. 2a in White and Seymour (2005a)
and cannot be used to determine a minimum sample size.
Our analysis of relationships of alpha and beta errors with
sample size provides direct and strong evidence of the
minimum sample size required.

If our conclusion that 30% of species was required to
lower the beta error of accepting a false  =2/3 or 3/4
below 0.05 applies, at least 1389 mammal species should be
sampled, considering that more than 4629 mammal species
have been recognized in the world (Wilson and Reeder,
1993). Meta-data syntheses that integrate data from
multiple individual studies to increase sample size seem to
be a correct approach in empirical allometric scaling
analysis (White and Seymour, 2003; Savage et al., 2004).

4.2. Influence of measurement error

Measurement errors are ubiquitous in biological re-
search due to heterogeneity in space and time, growth
conditions, precision of measurement equipment, and
human error. Such measurement errors could increase the
difficulty in accepting a true null hypothesis or rejecting a
false null hypothesis. As demonstrated here, measurement
errors caused serious alpha and beta errors. Measurement
error of body mass apparently had more influence on the
parameter estimations than that of BMR; therefore more

attention should be given to obtaining accurate measure-
ments of body mass. Interestingly, when both measurement
errors were high, there was a huge alpha error, but beta
errors decreased, probably due to the increased variations
in parameter estimation that decreased power in data
analysis. Therefore, the utmost care should be taken when
the experiments are carried out and all experimental steps
should be examined for possible improvements of measure-
ment accuracy (Bottcher, 2004). When data from multiple
studies are compiled, researchers should make sure that the
measurements in different studies were made using similar
protocols.

Another source of measurement errors could be the
systematic errors in the measurement of BMR. As pointed
out in White and Seymour (2003), the conditions for BMR
measurement are quite strict and often not well met, the
measurements of BMR would tend to be overestimated in
many cases. One statistical method to separate this
systematic error could be to add an intercept in the power
law function. With this intercept added, the estimate of
allometric scaling exponent could be more deviated from
2/3 or 3/4.

4.3. Influence of analysis method

Both linear and nonlinear regressions have been
extensively used in ecological studies (e.g., Luo et al.,
2001; Jackson et al., 2002; Hui and Jackson, 2006). It is
somewhat surprising, therefore, that nonlinear regression
has not been applied in power law analysis, because power
law is a typical nonlinear regression equation. When the
power law was first proposed, it was difficult to use NLS
methods, since iterative procedures are needed to solve the
equations but are difficult to perform without computers.
Today, however, a power law equation can be fit in seconds
using computer programs such as SAS. Although methods
could influence the parameter estimations, as demonstrated
by Kaitaniemi (2004) and in this study, to our knowledge,
all calculations and discussions on analysis methods in
power law analysis so far have focused on linear regression
of the transformed data or on a few non-parametric
methods (Beauchamp and Olson, 1973; Dodds et al., 2001;
Niklas, 2004; Martin et al., 2005).

The reasons given for using log-transformed data, as
summarized by Niklas and Enquist (2002), are to reduce
the problem of working with outliers, and to comply with
the statistical assumptions of normality and homoscedas-
ticity. For the log-transformed metabolic rate and mass
data, OLS, MAR and RMA regression can be used. RMA
is recommended in allometric scaling analysis, especially
when the variables of interest are biologically interdepen-
dent and are subjected to unknown measurement error,
and when functional rather than predictive relationships
are sought (Dodds et al., 2001; Niklas and Enquist, 2002).
Dodds et al., (2001) demonstrated that parameter estimates
of b varied slightly with linear regression methods, similar
to what we showed here. Niklas (2004) also realized that
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the different linear regression methods can profoundly
influence the numerical values of scaling components, but
the differences became small when the correlation of log-
transformed metabolic rate and body mass was higher
(Niklas and Enquist, 2002).

Measurement error on body mass and BMR also
influence the performance of the methods (McArdle
et al., 1990; Farrell-Gray and Gotelli, 2005). McArdle
et al. (1990) concludes that OLS regression should be used
in preference to RMA regression with the measurement
error in the independent variable is less than one-third of
that in the dependent variable. It does not matter which
method to choose when the correlation coefficient is large
(e.g., r >0.90). Farrell-Gray and Gotelli (2005) concludes
that the inappropriate use of OLS regression biases the
estimates of b away from 3/4. However, their simulation
analysis was based on an evenly spaced sample of body
sizes from 1 to 4000 kg, and this introduces an additional
bias: a more appropriate body mass distribution produces
a similar pattern, but less extreme results.

Log-transformation, however, introduces a systematic
bias into calculations because the largest values are
compressed on the logarithmic scale, and a correction
factor is needed to reduce this bias (Beauchamp and Olson,
1973; Miller, 1984; Niklas, 2004). Even adjusted for bias,
the linear regression methods still could not fit our data
well when the independent variable was large (Fig. 3; also
see Miller, 1984). These differences were reflected on the
parameter estimate b. As we showed here, nonlinear
regressions provided much higher estimates of the scaling
components, which were significantly larger than both 2/3
and 3/4.

The large differences found between direct nonlinear
methods and indirect regression methods were due to the
differences in objective functions (see Table 4). Linear
regressions minimized 3", wi(Y} — [Y} + bM'])* (w; = 1 for
OLS, w; = 1/(1+b% for MAR, and w; = 1/b for RMA),
but NLS methods minimized S ,w,(Y,;—[Yo+ M?])>
(w; =1 for NLS and w; = 1/M'? for WNL). It is quite
clear here that only NLS and WNL worked directly to
minimize the difference of estimation BMR (i.e., YOM?)
and observed BMR (i.e., Y;). Due to this reason, NLS
tends to fit the large data well. Possible heteroscedasticity
could be reduced by WNL regression analysis. Since WNL
provided the least bias and RMSE, WNLS method should
be considered in power law analysis.

Pursuing a simple universal law is the dream work of
many researchers, and human never stop searching such a
law. But we may just start to understand the basic rules
that appear to govern much of biology’s seemingly dazzling
complexity (Bokma, 2004). Besides the factors we showed
here, there are several other factors could influence
allometric scaling analysis. (1) Martin et al. (2005) raised
the influence of phylogeny problem. Individual taxa in the
comparison may not be statistically independent because of
phylogenetic relationships within the tree to which they
belong. Limited divergence in body size between closely

related species is one of the prime examples of phylogenetic
inertia. Several phylogenetically based statistical methods
have been proposed include independent contrasts, gen-
eralized least-squares models, and Monte Carlo simula-
tions (White and Seymour, 2003; Munoz-Garcia and
Williams, 2005; Garland et al., 2005). Although this
problem could be partially offset by restricting analysis to
the generic level, this would reduce the sample size and
have other drawbacks (Martin et al., 2005). We expect that
when phylogeny information will be incorporated into data
analysis, the parameter estimation would be improved in
the future; (2) extreme and biased data points could
influence the estimation of allometric scaling component
(Smith, 1984). In the data set we used here, there are
several extreme large data points. If we remove one or a
few large data points, the estimate of allometric scaling
component decreased remarkably; and (3) other statistical
functions could fit the data equally well as power law
function. Using the TableCurve, we found many linear and
nonlinear statistical models can be used to fit this data set.
There is no way to distinguish which model is better than
another for the several best regression models. More
theoretical studies on the mechanisms of the allometric
scaling should be focused in the future (e.g., Demetrius,
20006). Identifying and understanding broad scale conver-
gence in functional relationships are more fascinating, and
certainly very challenging.

5. Conclusions

After a systematic analysis of sampling size, measure-
ment error, and analysis method, we provide evidence that
these three factors have large influences on allometric
scaling exponents, requiring a thorough investigation. Our
goal in this analysis was not to prove that whether the
scaling exponent f equals 2/3 or 3/4, but to raise cautions
in interpreting power law results and to provide helpful
suggestions for future research. A nonlinear regression
method provided a better fit to the observed data here and
should be considered in power law analysis. For variables
that are measured with errors, it is important to obtain
accurate estimates with repeated measurements on similar
individuals grown under similar conditions. Increased
uniformity in measurement protocol would also facilitate
meta-data analyses across studies to increase overall
sample size (Meinzer, 2003).
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Appendix A. Nonlinear regression

Nonlinear regression model describes the relationship
between a dependent (or response) variable and one or a
set of independent (or predictor) variables. Compared to
linear regression model, nonlinear regression model is more
widely used in social sciences and natural sciences such as
biology and ecology. Unlike the linear regression analysis,
there is generally no analytical way to solve nonlinear
regression models. Usually numerical optimization algo-
rithms are required to determine the best-fitting para-
meters. Among many different methods, one often used is
to minimize the sum of squared deviations (residuals), as in
linear regression analysis. This is the OLS approach. In
cases where there are different error variances for different
errors, a sum of weighted squared residuals may be
minimized, so called the WLS approach.

To solve NLS problems, one method frequently used is
the Gauss-Newton algorithm. This algorithm has been
implemented in many statistical software, such as SAS and
SPSS. For the simple nonlinear regression models such as
power law function, there is no difference in the model
parameter estimates among different algorithms. Here, we
briefly describe the procedure using Gauss—Newton algo-
rithm which was used in this analysis (Glantz and Slinker,
2001; Nerlove, 2005).

The basic form for a nonlinear regression model between
response y and a predictor x is given as

Vi Zf(xia 0) + €,

where y;, x; are the data, f'is a nonlinear function involving
the predictor and the parameter vector 6, and ¢; is a
random error. The sum of squared residuals is S(6) =
S (; — f(x;,0))* that is to be minimized. Differentiating
S(0), we obtain

oS0 of (x;.0
SO 23— s L,

Setting the partial derivatives to 0 produces estimating
equations (i.e., normal equations) for the regression
coefficients. Because these equations are in general non-
linear, they require solution by numerical optimization.
The Gauss-Newton algorithm is an iterative procedure. An
initial guess for the parameter vector 0 should be provide,
which we will call 0y. This method uses the Taylor series

S (xi,0) = f(xi,00) + Jr(00)(O0 — O) + - - -, (A.3)

where J(0,) denotes the Jacobian of f at 0 = 0.
Subsequent estimates of 0, for the parameter vector are
then produced by the recurrence relation

Ox1 = Ok = (Jr(00) T 1(01)) ™" T ()" e(Br).

(A.1)

(A.2)

(A.4)

To find the best estimates of 6, Eq. (A.4) is iterated until
convergence is achieved.
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