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Abstract 

 
This paper presents a novel method for detecting 

multiple moving targets in real-time from infrared (IR) 
image sequences collected by an airborne IR camera. 
This novel method is based on dynamic Gabor filter 
and dynamic Gaussian detector. First, the ego-motion 
induced by the airborne platform is modeled by 
parametric affine transformation based on feature 
point matching, and the IR video is stabilized by 
eliminating the background motion. Then, a dynamic 
Gabor filter is employed to enhance the image changes 
for accurate detection and localization of moving 
targets. The orientation of Gabor filter is dynamically 
changed according to the orientation of optical flows. 
Next, the specular highlights generated by the dynamic 
Gabor filter are detected. The outliers and specular 
highlights are fused to indentify the moving targets. 
The experimental results show that the proposed 
detection algorithm is effective and efficient. And the 
detection speed is approximate 2 frames per second. 

 
1. Introduction 
 Detection of moving targets in infrared (IR) 
imagery is a challenging research topic in computer 
vision. Detecting and localizing a moving target 
accurately is important for automatic tracking system 
initialization and recovery from tracking failure. 
Although many methods have been developed on 
detecting and tracking targets in visual images 
(generated by daytime cameras), there exits limited 
amount of work on target detection and tracking from 
IR imagery in computer vision community [1]. In 
comparison to the visual images, the images obtained 
from an IR camera have extremely low signal to noise 
ratio, which results in limited information for 

performing detection and tracking tasks. In addition, in 
airborne IR images, non-repeatability of the target 
signature, competing background clutter, lack of a 
priori information, high ego-motion of the sensor, and 
the artifacts due to weather conditions make detection 
or tracking of targets even harder. To overcome the 
shortcomings of the nature of IR imagery, different 
approaches impose different constrains to provide 
solutions for a limited number of situations. For 
instance, several detection methods require that the 
targets are hot spots which appear as bright regions in 
the IR images [2] [3] [4]. However, in realistic target 
detection scenarios, none of these assumptions are 
applicable, and a robust detection method must 
successfully deal with these problems. 

This paper presents an approach for robust real-time 
target detection in airborne IR imagery. This approach 
has the following characteristics: (1) it is robust in 
presence of high global motion and significant texture 
in background, (2) it does not require that targets have 
constant velocity or acceleration, (3) it does not 
assume that target features do not drastically change 
over the course of tracking. The main contribution of 
this paper is the complete algorithm presented. There 
are two foci in this algorithm. The first one is the 
dynamic Gabor filter, where the orientation of Gabor 
filter is controlled by the orientation of the optic flows. 
The second one is dynamic Gaussian detector, which 
is used to identify the target location. The following 
shows the algorithm in detail. 

2. Algorithm description 
This algorithm can be formulated in four steps: (i) 

motion compensation, (ii) dynamic Gabor filtering, 
(iii) specular highlights detection, and (iv) target 
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localization. The following will describe these 
processing steps in detail. 

 

2.1. Motion compensation 
The motion compensation contains the feature 

point extraction, optical flow detection, global 
parametric motion model estimation, and motion 
detection. 

A. Feature point detection. The feature point 
extraction is used as the first step of this algorithm. 
Harris corner detector, Shi-Tomasi’s corner detector, 
SUSAN, SIFT, SURF, and FAST are some 
representative feature point detection algorithms 

developed over past two decades. We evaluated these 
algorithms according to two criteria, processing time 
and detection accuracy. Our experiment results show 
that Shi-Tomasi’s method is more reliable than others, 
and is pretty fast. Therefore, this work employs Shi-
Tomasi’s method for feature point detection. For two 
input images, tI ′  and tI , let tP ′ = { , …, }, 

and 
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tI ′ is called 

previous image, tI  is called current image or reference 
image.  
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B. Optical flow detection. There are many optical flow 
detection algorithms. Recently there are several new 
developments on this topic. The evaluation results of 
these algorithms in [5] show that Bouguet’s method [6] 
is the best for the interpolation task. In our algorithm, 
we employed Bouguet’s method for optical flow 

detection. Let ttF ′ = { ttF ′
1 , ttF ′

2 , …, tt
KF ′ } denote the 

detected optical flows. For the feature points in set tP ′  
and tP , from which no optical flow is detected, they 
are filtered out. Therefore, after this filtering operation, 
the number of feature points in two sets, tP ′ and tP , 
becomes the same with the number of optical flows in 
optical flow set ttF ′ , that is, K. Fig. 1 (a) and (b) show 
two input images,  tI ′  and tI , where ∆ is set at 3. Fig. 
1 (c) shows the optical flows detected from the feature 
points, where the optical flow are marked by red line 
segments and the endpoints of the optical flows are 
marked by green dots (refer to (e) for the partially 
enlarged picture). 

(d) (c) 

C. Motion model estimation. Generally, the approach 
to find the coordinate transformation relies on 
assuming that it will take one of the following six 
models, (i) translation, (ii) affine, (ii) bilinear, (iv) 
projective, (v) pseudo perspective, and (vi) biquadratic, 
and then estimating the two to twelve parameters in the 
chosen models. The translation model is not applicable 
to the problem that contains rotation. The complicated 
models such as projective and biquadratic are 
computationally heavy, and parameter estimation are 
difficult. Here we tested affine, bilinear, and pseudo 
perspective model by adding some error to a parameter 
and checking how the image is distorted. The 
experiment results show that affine model is robust to 
parameter estimation error. Therefore, our method use 
affine model. Six parameters in affine model are 
estimated by using feature points.  

(e) (f) 

Fig. 1 (a)  and (b) Two input images; (c) Detected optical
flows; (d) Image changes; (e) Partially enlarge of (c) to
show the outliers and inliers; (f) Dynamic Gabor filter
response; (g) Specular highlights; (h) Clusters of specular
highlights. 

(g) (h) 



(1) Feature points are separated into two categories, 
inliers set  and , and outliers set  and . 
The feature points associated with the moving targets 
are called outliers. Those associated with the 
background are called inliers.  

t
inP ′ t

inP t
outP ′ t

outP

(2) Outliers are clustered by distance-based clustering 
algorithm, which will be used for target identification. 
Inliers are used to estimate the affine model by 
employing RANSAC-like algorithm. Let Ab denote the 
estimated affine model.  
 
D. Motion image generation. Here, in airborne 
imagery, the motion image means changes caused by 
the moving targets. The previous image is transformed 
by the affine model Ab, and subtract from the current 
image. Fig. 1 (d) shows the motion image generated by 
Eq. (1) from two input images in Fig. 1 (a) and (b). 

2.2. Dynamic Gabor filter 
A Gabor wavelet is defined as, 
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where z = (x, y) is the point with the horizontal 
coordinate x and the vertical coordinate y. The 
parameters µ  and ν define the orientation and scale of 
the Gabor kernel,   ⋅  denotes the norm operator, and 
σ  is related to the standard derivation of the Gaussian 
window in the kernel and determines the ratio of the 
Gaussian window width to the wavelength. The wave 
vector   is defined as follows  νµ ,k

µφ
ννµ

iekk =,              (2) 

where  ν
ν fkk max=  and 8πµφµ = ,  is the 

maximum frequency, and  is the spatial frequency 
between kernels in frequency domain. 

maxk
νf

In our algorithm, we fix the following parameters, 
=maxk 2/π , σ = π2 , 2=f , and ν =3. The 

orientation µ  is dynamically changed according to 
optical flows from inliers. We call it dynamic Gabor 
filter. The orientation µ  is defined as, 
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Fig. 1 (f) shows the Gabor filter response by 
performing convolution for the frame difference image 
in Fig. 1 (d) and the dynamic Gabor kernel. Dynamic 
Gabor filter enhanced the frame difference. 

 

Frame 50 Frame 44 

Frame 73 Frame 53 

Fig. 2 Target detection results in frame 44, 50, 53, and 73. 
Green circles mark the ground truth target positions, 
labeled manually. Red circles means targets detected based 
on outliers clustering and specular highlights. Purple circles 
mark the output of the dynamic Gaussian detector. 

2.3. Specular highlights detection 
 As can be seen in Fig. 1 (f), the image changes 
appear as high intensity in the dynamic Gabor filter 
response. We call these high intensity specular 
highlights. Therefore, the target detection problem 
becomes the specular highlights detection problem. 
Because the intensity of highlights changes for the 
moving targets (some specular highlights are dimmer 
than others), the thresholding algorithms cannot detect 
all specular highlights successfully. Here, we employ 
the pixel intensity on the circular circles C1, C2, and C3, 
centered at C0, where C0 is the pixel under examination. 
The detector compares the intensity at C0 and the 
intensity of pixels on three circular circles C1, C2, and 
C3, with radius R1, R2, and R3, respectively. C1, C2, and 
C3 are sampled at 6/π  interval, hence the detector 
will only compare the intensity at C0 and 12 sample 
points, Cj,1, Cj,2, …, Cj,12, from each circular circle. Let 
G(z) denote the dynamic Gabor filter response at z, the 
discrimination of specular highlights is as follows. If 
G(C0)≥G(Cj,i) and G(Cj,i) ≥ G(Cj+1,i), C0 is a specular 



highlight, otherwise not, where j = 1, 2, and i = 1, 2, …, 
12. 

The specular highlight points detected from the 
dynamic Gabor filter response in Fig. 1 (f) are shown 
in Fig. 1 (g) by red dots. The specular highlight 
clustering results are sown in Fig. 1 (h). 

2.4. Moving target localization 
Outliers and specular highlights are used to 

localize the moving targets. The identification process 
is as follows. 
(i) For a specular highlight, if its center lies in the 

terrain of a outlier cluster, it is considered as a 
target. If its center does not lie in any cluster, the 
dynamic Gaussian detector is employed. 

(ii) For the general 2-D Gaussian function, its 
orientation is controlled by the orientation of the 
specular highlight. Here we call it dynamic 
Gaussian detector. LACC is used as to similarity 
measure. If LACC is larger than threshold TG, this 
specular highlight is considered as a moving target. 

3. Experiment results 
 The entire algorithm described in Section 3 is 
implemented by using C++ and OpenCV on windows 
platform.  is set at 2,  the similarity threshold T∆ G  at 
0.93, and A, xσ , and  are set at 1, 25.0, and 15.0, 

respectively. The radii, R
yσ

1, R2, and R3, of three circles 
for specular highlights detection is 7, 10, and 13, 
respectively. The IR video data from the Vivid datasets, 
provided by the Air Force Research Laboratory, is 
used. Fig. 2 shows target detection results at frame 44, 
50, 53 and 73 for an input image sequence. Green 
circles mark the ground truth target positions, labeled 
manually, red circles means targets detected based on 
outlier clustering and specular highlights, and purple 
circles marks the output of the dynamic Gaussian 
detector. 

4. Performance analysis 
 To evaluate the performance of this algorithm, we 
selected four image sequences with the significant 
background as the test data. Each sequence contains 
100 frames, and each frame contains 2 to four moving 
targets. The ground truth targets are labeled manually. 
The total number of targets in these 4 datasets is 1231. 
We examined the correct detection rate, hit rate, and 
processing time. The hit rate is defined as the ratio for 
the intersected area of detected target and ground truth 
target and the area of the ground truth target. The 
experiments are conducted on a Windows Vista 
machine mounted with a 2.33 GHz Intel Core 2 CPU 

and 2GB main memory. The total average correct 
detection rate is 86.6%, and hit rate is 78.6%, 
respectively. The detail detection results are shown in 
Table 1. The average processing time is 581 ms/frame. 
Table 1. Target detection results. 
  Data 1 Data 2 Data 3 Data 4
Total targets 381 266 287 297
Detected targets 326 221 249 270
Missed targets 55 45 38 27
Correct detection 85.6% 83.1% 86.8% 90.9%
Miss detection  14.4% 16.9% 13.2% 9.1%
Hit rate 85.9% 81.3% 70.7% 76.6%
5. Conclusions and future work 
This paper described a method for multiple moving 

target detection from airborne IR imagery. We tested 
the algorithm by using the airborne IR videos from 
AFRL Vivid datasets. The correct detection rate is 
86.6%, and the hit rate for the correct detection is 
78.6%. The processing rate is 581 ms/frame, that is, 
approximate 2 frames per second. This speed meets the 
requirement for many real-time target detection and 
tracking systems. The future work is to apply this 
algorithm to the target tracking systems.  
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