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Abstract—One of the most challenging security concerns 
for network administrators is the presence of rogue access 
points. In this paper, we propose a statistical based 
approach to detect rogue access points using a Hidden 
Markov Model applied to passively measured packet-
header data collected at a gateway router. Our approach 
utilizes variations in packet inter-arrival time to 
differentiate between authorized access points and rouge 
access points. We designed and developed our Hidden 
Markov Model by analyzing Denial of Service attacks and 
the traffic characteristics of 802.11 based Wireless Local 
Area Networks. Experimental validations demonstrate the 
effectiveness of our approach. Our trained Hidden Markov 
Model can detect the presence of a Rogue Access Point 
promptly within one second with extreme accuracy (very 
low false positive and false negative ratios are obtained). 
The success of our approach lies in the fact that it leverages 
knowledge about the behaviour of the traffic characteristics 
of 802.11 based WLANs and properties of Denial of Service 
attacks. Our approach is scalable and non-intrusive, 
requiring little deployment cost and effort, and is easy to 
manage and maintain. 
 

Index Terms—Rogue Access Points, Hidden Markov 
Models, Compromised Rogue Access Points and Denial of 
Service. 
 

I. INTRODUCTION 
Deployment of wireless local area networks (WLANs) 

in commercial and military domains has been growing at 
a remarkable rate during the past several years. The 
presence of a wireless infrastructure within an 
organization’s premises, however, raises various network 
management and security issues. One of the most 
challenging issues in WLANs is Rogue Access Points 
(RAPs) i.e., wireless access points that are installed 
without explicit authorization from a local network 
administrator [1]. Although usually installed by 
employees of the organization for convenience or higher 
productivity, RAPs pose serious security threats to the 
local network. First, they potentially open up the network 
to unauthorized parties, who may steal confidential 

information or even launch Denial of Service (DOS) 
attacks in the network.  

According to an early study by Gartner [2], rogue APs 
are present on about 20% of all enterprise networks. The 
main reason is advancements in hardware and software 
have made AP installation, AP discovery, and AP 
compromise an easy task for attackers. It is convenient to 
obtain an AP and plug into a network without being 
discovered for some time. Moreover, commodity Wi-Fi 
network cards have the capability to capture all 802.11 
transmissions.  This has led to increase in the process of 
driving around and looking for vulnerable APs (war-
driving activities). 

The main contribution of this paper is a novel approach 
for RAP detection based on measurements collected at 
the edge of a network. The approach detects a RAP by 
observing the traffic characteristics of the associated 
individual end hosts. It is probabilistic and uses Hidden 
Markov models (HMMs) to represent the likelihood of 
transitions between the different security states of an 
access point. This approach roughly works as follows. 
We first train the HMM model based on a training data 
set, which has information gleaned from packet traces. 
The packet traces are collected from a test-bed wherein 
traffic comprises of normal Internet activities and DoS [2] 
attacks. Once the HMM model is trained, we monitor the 
packet arrivals of different flows at the edge of the 
network. By observing the packet inter-arrival time of 
these flows, the HMM model detects an access point as a 
RAP or an authorized access point. 

The rest of the paper is organized as follows. Section 2 
briefly discusses the related work. The proposed HMM 
based RAP detection approach is elaborated in Section 
3.The detailed analysis of the approach is provided in 
Section 4. The evaluation results are presented in Section 
5. Finally, we conclude in Section 6. 

II. BACKGROUND AND RELATED WORK 
A comprehensive taxonomy of RAP detailing different 

categories of RAPs has been presented by Ma et al. [3]. 
The authors have categorized access points in the 
following four classes: improperly configured, 
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unauthorized, phishing, and compromised. The brute-
force approach of RAP detection used by most 
enterprises is to equip IT personnel with wireless packet 
analyser tools and scan the network traffic [4-5]. 
AirDefense [4] is one such product. It uses a combination 
of radio frequency sensors and an intrusion detection 
server to capture process, and correlate network events. 
However, the latest release, AirDefense 7.2, has a starting 
price of US $7,995. Also, the RF sensors make it difficult 
to guarantee a complete coverage of the network to 
ensure effective rogue AP detection. 

 To the best of our knowledge there are few research 
efforts on detecting RAP. Fault diagnostics in IEEE 
802.11 networks is presented in [6]. Multiple APs and 
mobile clients perform RF monitoring to help detect the 
presence of RAPs. Each client is equipped with special 
diagnostic software, and RAPs are assumed to transmit 
beacon messages and respond to probe requests.  Further, 
its detection ability is not based on the assumption that 
RAPs will function properly. 

Bahl et al. [7] propose a distributed monitoring 
infrastructure called DAIR. It attaches USB wireless 
adapters to desktop computers for more comprehensive 
traffic capturing ability. The effectiveness of DAIR is 
dependent on AP functionality that can be easily turned 
off. Additionally, both of [6] and [7] assume that 
characteristics of IEEE 802.11 standards cannot be 
violated by the adversaries.  

Differences in inter-packet spacing between traffic 
flows on wired and wireless networks is used in [8-9] for 
identification of rogue APs. However, the scheme does 
not differentiate between wireless traffic from authorized 
and unauthorized APs. It also assumes that APs will be 
connected within one hop to a switch monitoring the 
traffic, and relies on visual inspection of traffic 
characteristics. Multiple network sniffers are used in [2] 
for detecting rogue APs and eavesdroppers. Each sniffer 
has three network cards, and the intrusion detection 
capabilities are stymied by MAC address spoofing. Yeo 
et al. [6] improve the performance of wireless monitoring 
by merging packet captures from multiple network 
sniffers and carefully selecting sniffer placement. The 
techniques are exploited to characterize MAC layer 
traffic and perform retrospective diagnoses. 

Recently, two passive online rogue AP detection 
algorithms are proposed in [10]. The core of these two 
algorithms is the sequential hypothesis tests applied to 
packet-header data that are passively collected at a 
monitoring point. Both algorithms exploit the 
fundamental properties of the 802.11 CSMA/CA 
mechanisms and the half duplex nature of wireless 
channels to differentiate wired and wireless LAN TCP 
traffic. Once TCP ACK-pairs are observed, prompt 
decisions are made with little computation and storage 
overhead. Yin et al. [11] propose a layer-3 rogue AP 
detection approach using the combination of a verifier 
and wireless sniffers. In this approach, a verifier on the 
internal wired network is employed to send test traffic 

towards wireless edge. Once wireless sniffers capture an 
AP relaying the test packets, the AP is flagged as rogue. 
In addition, binary hypothesis testing technique is 
adopted to improve the robustness of detection. 

A router throttle mechanism was used for countering 
Distributed Denial of Service (DDoS) attacks directed at 
an Internet server [16]. This mechanism specifically 
targetted Neptune type of DDoS attacks. The authors 
have advanced a control-theoretic, server-centric model 
useful for understanding system behaviour under a 
variety of parameters and operating conditions. The 
adaptive throttle algorithm is effectively used to protect a 
server from resource overload, and increase the ability of 
normal traffic to arrive at the intended server. The results 
indicate that server-centric router throttling is a promising 
approach to prevent DDOS attacks, but several nontrivial 
challenges like low computation and memory overheads 
remain that prevent its immediate deployment in the 
Internet. 

A tool for statically validating a TCP server’s ability to 
survive SYN flooding attacks has been proposed [18]. 
The tool automatically transforms a TCP-server 
implementation into a timed automation, and it 
transforms an attacker model, given by the output of a 
packet generator, into another timed automation. 
Together the two timed automata for a system for which 
the model checker UPPAAL can decide whether a 
machine is in a bad state, in which the buffer overruns, 
can be reached.  

Hidden Markov Models (HMMs) have also been used 
to classify Network Intrusions [17]. The HMMs were 
modelled to detect buffer overflow based attacks. The 
disadvantage of this method is it cannot be applied for 
detection of attacks that are performed over a long period.  

Our proposed framework differs from previous work in 
which it provides an efficient and prompt detection of 
RAPs by analysing the traffic characteristics of WLANs. 
It also defends against a more insidious type of rogue 
APs, i.e., the compromised APs, that has never been 
addressed in the literature before. According to Queuing 
theory, “average service time must be less than the inter-
arrival rate or the system is unstable”. Our model can 
detect rogue access points, which are the source of 
specific DOS attacks. Moreover, the deployment of this 
model does not require modifications to the underlying 
wireless standard. This makes our framework an efficient 
and cost-effective solution. 

III. PROBLEM DEFINITION AND APPROACH 
In this section, we state our RAP detection problem 

and describe, at a high level, our approach towards 
solving this problem. Consider a wireless local area 
network, e.g., a university campus or a military network, 
as illustrated in Fig. 1. End hosts within this network only 
use 802.11 WLAN to access the network. A monitoring 
point is located at the gateway router of this wireless 
local network, capturing traffic flows coming in and 



going out of the network. The end hosts are connected to 
three access points (AP1, AP2, and AP3). Each of these 
access points can be termed as authorized or rogue 
depending on the traffic generated by them. The end 
hosts authorized access points generate traffic indicative 
of normal Internet activities (web browsing, email, ftp 
transfer, etc.). The end hosts connected to the RAP are 
the source of DOS attacks. Our goal is to determine 1) 
what fraction of traffic flows are source of DOS attacks 
(2) for each traffic flow, what is the probability that this 
particular traffic flow originated from a RAP.  

 
Fig. 1  Network Configuration 

 
Our approach utilizes the intrinsic characteristics of 

WLAN connections and DOS attacks. The approach 
operates roughly as follows. For packets belonging to 
each traffic flow, the inter-arrival times are observed at 
the monitoring point. As will be shown in Section III, the 
inter-arrival times for packets originating from authorized 
access points and RAPs differ significantly. Our trained 
HMM exploits this difference to differentiate traffic 
originating from authorized access points and RAP.  

In next section, we present the analytical basis of our 
scheme, which demonstrates how the inter-arrival times 
will differ for traffic flows originating from authorized 
access points or an RAP. We then describe the design of 
the HMM (the core of our classification scheme).  
 

A. Hidden Markov Model Based RAP Detection approach 
The use of Hidden-Markov Models (HMMs) as a 

method for detecting intrusion detection in an individual 
computer system has been proposed [12-14]. An HMM 
enables the estimation of a hidden state based on 
observations that are not necessarily accurate. An 
important feature of this model is that it is able to model 
the probability of false positives and false negatives 
associated with the observations. The method is based on 
Rabiner’s work on HMMs [15]. 

In our problem setting, we use the HMM to describe 
the current security state of the access points in the 
network. The security state of the access point can be 

identified by observing the inter-packet arrival time in the 
packet traces. These packet traces help us determine the 
state of an access point and thereby detect the RAPs.  

Assume that each access point AP can be modelled by 
N different security states, i.e. 1 , ...,{ }NS s s= . The 
security state of an access point changes over time, which 
is an indication of normal or rogue activities. The 
sequence of states visited by an access point is denoted 
by 1, ..., TX x x= , where tx S∈ . Traffic flowing through 
each access point is monitored at the gateway router. The 
monitoring process keeps track of the inter-arrival time of 
the traffic flow. A range of inter-arrival times is 
represented as an observation message. The ranges of 
inter-arrival times are represented as observation 
messages from the observation symbol set 1{ ,..., }MV v v= , 
where M is the total number of messages (or unique 
ranges). The sequence of observed messages is denoted 
by 1 , ..., TY y y= , where ty V∈ the observation message is 
received at time t. The HMM for each host consists of a 
state transition probability matrix P, an observation 
probability matrix, and an initial state distributionπ . The 
HMM is denoted by ( , , )P Qλ π= . The access points 
modelled in this paper are assumed to have three possible 
security states S= {G, P, C} which are defined as follows: 

Good (G): The access point is not subject to any 
attacks. This state represents that the access point is not 
probed or attacked and it behaves normally in the 
network without any intrusive activity. 

 
Probed (P): The access point is subject to probing. 

Port sweeping is a good example of probing. This shows 
that the access point can be compromised or attacked by 
unauthorized hosts in order to intrude into the network.  

 
Compromised (C): It shows that an unauthorized user, 

which tried to intrude into the network, has compromised 
the access point. This is the state where the access point 
has been attacked and the access points begin to 
malfunction in the network and try to intrude in the 
network activities.  

 
Fig. 2 shows the HMM model for the security states of 

the access point. The edge from one node to another 
represents the fact that when an access point is in the state 
indicated by the source node it can transit to the state 
indicated by the destination node. Note that the graph is 
fully connected, which indicates that it is possible to 
transit from any security state to any other security state. 



 
 

Fig. 2 Three state HMM model  

 
The state transition probability matrix P describes the 

probabilities of transitions between the states of the 
model. The transition probability ijp describes the 

probability that the model will transfer to state js  at 

time 1t +   given that it is in state is at time t , i.e., 

1( | ),1 , .ij t j t ip P x s x s i j N+= = = ≤ ≤
 

The observation probability matrix Q describes the 
probabilities of receiving different observations given 
that the access point is in a certain state. Each 
observation, ( )nq m  represents the probability of receiving 
the observation symbol mv at time t , given that the access 
point is in state ns at time t ,i.e., 

 
( ) ( | ),1 ,1 .n t m t nsq m P y v x n N m M= = = ≤ ≤ ≤ ≤

 
In next section, we will describe in details the two 

main stages of the HMM based RAP detection: HMM 
Training and Detection. 

 

IV.  HMM TRAINING AND DETECTION 
In this section, we present the details of the two main 

stages in our approach. Stage 1 is the training of the 
HMM based on packet traces. Stage 2 is the detection of 
RAP by the trained HMM.  

The goal of HMM training is to estimate appropriate 
values for the model parameters P and Q. A uniform 
initial distribution of the P and Q parameters is adequate 
as a basis for training the parameters, according to [15]. 
The initial parameters can alternatively be determined by 
network administrator based on traffic statistics collected 
over a period of time. These methodologies provide a 
framework for identifying threats and vulnerabilities and 
for determining probabilities and consequences of DOS 
attacks. Based on a HMM with initial parameters, there 
are several algorithms available for re-estimating the 
parameters (i.e., training the models). There is, however, 
no analytical solution to the re-estimation problem.  

A standard approach for learning HMM parameters is 
the Baum-Welch method, which uses iteration to select 
HMM parameters to maximize the probability of an 
observation sequence. We adopt the Baum-Welch method 
to estimate the HMM parameters for our model. The first 
step in the estimation process is to generate the training 
set. We refer to a set of traffic flows from which the 
observation distribution is obtained as a training set.  

We setup a network as illustrated in Fig. 1. Next, we 
present the three known DOS attacks detected by our 
model. There are two types of DOS attacks, logic and 
flooding attacks. We have mainly focused on the flooding 
attacks. The three DOS attacks considered in this paper 
are presented in Table 1. The attacks are generated by the 
end hosts connected to the RAP. 
 

Attack Description 

Pod DOS using oversized ping packets 

Portsweep Sweep through many ports to 
determine available services on a 
single host. 

Neptune Syn flood DOS 
 

Table 1 - Attack Repertoire 
 

The end hosts, which are connected to authorized 
access points generated traffic corresponding to normal 
web activities (browsing, email, ftp, etc). Packet arrivals 
in wireless LAN are modelled as Poisson process with 
exponential inter-arrival times [13-14].  For example, http 
traffic was represented by setting the web page inter-
arrival time an exponential distribution with a mean value 
of 60 seconds and the number of pages also followed an 
exponential distribution with a mean value of 10 pages.   

Packet traces for the three access points in Fig. 1 were 
collected over a one hour time frame. The key 
distinguishing characteristic between the traffic generated 
by the normal end hosts and the rogue end hosts is the 
packet inter-arrival time. So we use the packet inter-
arrival as the observation parameter for our HMM model. 
Based on the distribution of the inter-arrival times, we 
have identified three prominent inter-arrival ranges R1, 
R2 and R3. These ranges address all the traffic in the 
packet trace. Suppose that a set of nt packets are identified 
in the training set. Let xi denote the inter-arrival times of 
the ith packet. The value of xi is discretized as follows: If 
xi lies within the range of R1, it takes a value of 1, for R2 
the value is 2 and finally for R3 the value is 3. Thus, the 
observation distribution is obtained from the discretized 
value of xi, i = 1, 2, . . . , nt.  

Having generated the observation distribution from the 
training set, the final step of the training phase is to 
estimate the parameters of the model. The parameter 
estimation was implemented in Matlab with the help of 
routines provided by Kevin Murphy in the Hidden 
Markov Model Toolbox for Matlab [14].  



After training the HMM model, the next step is to 
perform detection of RAPs. The detection process was 
carried out by generating packet traces from the same 
network setup used for the training purposes. Observation 
distributions were extracted from the packet traces. For 
the detection process, we employed the Viterbi algorithm 
from the HMM toolbox [14]. Viterbi algorithm is a 
dynamic algorithm for finding the most likely sequence 
of hidden states called the Viterbi path, which results in a 
sequence of observed events. This algorithm gives the 
optimal state sequence for a particular HMM model. For 
our detection process, this algorithm will give the state of 
the access point in the network. The output of the 
detection procedure is a sequence of security states of the 
access point corresponding to each packet in the trace file. 
In the next section we evaluate the HMM model to 
analyse the accuracy and promptness of the detection 
process. 

V. SIMULATION AND RESULTS 
In this section, we use the network setup in Fig. 1 to 

obtain the performance results in terms of detection 
accuracy and promptness.  

A. Network Model 
The laptops are connected via IEEE 802.11b WLAN 

interface to the access points and the desktops are 
connected via Ethernet interfaces to the router. For each 
access point, traffic is generated from the laptop and the 
desktop respectively. For the rogue activity, there is an 
unauthorized host outside the network, trying to perform 
some intrusive activity in the network and get access into 
network by getting connected to one of the access points 
and compromise the access point. The goal is to detect 
the compromised Rogue access point attacked by the 
unauthorized client. 
 

B. Detection Accuracy 
Detection accuracy is evaluated by computing the 

successful detection of RAP, false positives, and false 
negatives. False positives indicate misidentification of an 
authorized access points as a RAP.  False negatives 
indicate miss detection of the presence of RAP. In our 
experiment setup, the end hosts are laptops which 
communicate via IEEE 802.11b WLAN interface to the 
access points. The source of the rogue activity is a 
“roaming” laptop carrying out attacks depicted in Table 1. 
An access point which is currently under attack by this 
“roaming laptop” is a RAP. The goal of our model is to 
report all instances of the presence of RAP. Traffic was 
generated from all laptops for a period of 60 minutes. The 
traffic was collected at the gateway router and an offline 
detection process was carried out using the trained HMM 
model.  

In Fig.3 the detection accuracy of the HMM model is 
presented for all three access points. The three access 
points exhibit all three security states during the 60 

minute time limit. The detection accuracy measures the 
effectiveness of the model to detect the compromised 
security state. A compromised security state indicates that 
the access point is acting as a RAP. The detection 
accuracy is consistent for all the three access points. The 
model exhibits 85 % accuracy with very slight variance. 
With a larger training set, the detection accuracy of the 
model will increase. Fig. 4 illustrates the number of false 
positives encountered during the detection process. 
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 Fig. 3 Detection Accuracy 
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Fig. 4 False Positives 

Fig. 5 illustrates the number of false negatives 
encountered during the detection process. The average 
number of false positives and false negatives are close to 
8 % with slight variance. The number of false positives 
and false negatives can be decreased further, if the 
training is performed on a larger training set. 

Finally in Table 2, we demonstrate the promptness of 
the detection process. Four attack instances are identified 
in the packet traces. The detection time in milliseconds 
for two access points are reported. The presence of a RAP 
is detected within less than a second. The quick detection 
of a RAP is equally important as increasing the detection 
accuracy. 
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Fig. 5 False Negatives 

 
Detection Time (milliseconds) Attack 

Instance Access Point 1 Access Point 2 
1 345 552 
2 797 66 
3 797 537 
4 803 174 

 
Table 2 - Detection Time 

C. Detection Accuracy for varied sequence lengths 
The sequence length is defined as the length of the 

observation sequence taken into consideration by the 
Viterbi algorithm In Figs 3-5, the sequence length was 
equal to 10 packets. In this section, we present simulation 
results with sequence lengths varying between 10 to 60.  
Fig. 6 illustrates the number of false alarms (false 
positives) encountered during the detection process at 
AP3. It can be observed that the number of false 
negatives is not affected by varying the sequence lengths. 
This property ensures that our HMM is invariant to 
variation in sequence lengths. With a large training data 
set, it is possible that larger sequence lengths will be used 
for the detection process. Thus, the detection accuracy of 
our HMM will not be affected by larger training datasets. 

 
 

 

 0

 5

 10

 15

 20

 0  50000  100000  150000  200000  250000  300000

Fa
ls

e 
Al

ar
m

s(
%

)

Rangeof Packets

Seq length=10
Seq length=20
Seq length=40
Seq length=50

 
Fig. 6 False Alarms 

 
Fig. 7 illustrates the number of missed detections (false 

negatives) encountered during the detection process. 
Similar to Fig.6, the numbers of false negatives are also 
not affected by varied sequence lengths. 
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Fig. 7 Missed Detections 

VI. CONCLUSION 
In this paper, we designed an efficient and prompt 

HMM to detect the presence of RAPs in a WLAN. The 
HMM model is implemented at the gateway router where 
traffic is captured and analysed.  Our approach comprises 
of two stages. The first stage is the training of a HMM 
and second stage is the detection of RAP based on the 
trained HMM. The presence of a RAP in our network is 
due to end hosts performing three specific DOS attacks. 
Our model is capable of detecting a RAP whenever an 
end host performs any of the DOS attack mentioned in 
the paper. The detection accuracy and promptness of the 
HMM has been evaluated by performing experimental 
results.  The presence of RAP is detected within one 
second and the average detection accuracy is 85%.  In our 
future work, we plan to improve the detection accuracy of 
our model.  The performance of the model will be 



evaluated using different network setups and various 
traffic scenarios. 
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