
aElectrical & Computer Engineering Department (ECE) bECE cECE dECE
Norfolk, Virginia 23529, USA Norfolk, Virginia 23529, USA Norfolk, Virginia 23529, US Norfolk, Virginia 23529, USA
mmath014@odu.edu msong@odu.edu sshetty@odu.edu rdmckenz@odu.edu

An Anomaly-based Algorithm to Detect Compromised Nodes in Wireless Sensor Networks

Mary Mathews a, Min Songb, Sachin Shettyc, Frederic D. McKenzied

Abstract

 Wireless sensor networks are typically deployed in
unattended and hostile environments which are vulnerable
to compromises. An adversary can reprogram the sensors
with malicious code to launch an intrusion attack. Once a
sensor node has been compromised, the security of the
network degrades quickly if there are not measures taken
to deal with this event. In this paper, we develop an
anomaly-based intrusion detection algorithm to detect
compromised nodes in wireless sensor networks. The idea
is to use packet arrival time as the primary parameter to
differentiate the legitimate nodes and the suspicious nodes.
Once the suspected node has been deemed compromised
by the base station, this information is then propagated to
the rest of the network. A simulator is developed to verify
the algorithm design. Analysis and simulation results show
that our algorithm is able to achieve high detection rate
with lower false positives.

Key words: sensor network, intrusion detection, algorithm

1. Introduction

 Wireless sensor networks are comprised of sensor nodes
that are designed to gather information regarding
environmental data such as light, temperature, sound, and
pressure. Each individual node is comprised of one or more
sensing devices, a processor, a communication unit, and a
power supply [3, 4]. The actual sensors gather the data that
represents the physical conditions being monitored once
the network has been deployed. The sensor readings that
are gathered periodically are sent to the processing unit
that houses the data and program memory. This processing
unit usually converts the data values into a human readable
format if this is desired or needed. The operating system
and other programs stored in the program memory dictate
all operations of the sensor nodes while they are in use.
While the power source of these devices normally comes
in the form of a battery, there has been research conducted
into other sources such as solar cells. The wireless aspect
of the communication in these sensor networks is usually
achieved through a radio antenna, although some sensors
have instituted infrared or laser communication schemes.
In many deployments, each sensor node is given a unique
identification number when the sensors are programmed.
This means that node identification is part of the code in
the program memory and is included in all outgoing
packets sent to the rest of the network.

1.1 Resource Constraints in Sensor Nodes

 Sensor nodes are designed with the goals of being small
in order to be utilized in different environments and
relatively cheap so that many nodes can be deployed in the
testing environments. This has lead to the sensor nodes
having constraints in terms of low computation capability,
limited memory, and short-lifetime power. Therefore, any
security method added to these networks will inevitably
consume some of these resources [5]. A good portion of
the memory is already needed for the code that runs on the
sensors that dictates to them what conditions to sense,
when to sense the conditions, etc.. Additional code that is
required to implement any algorithm needs to fall within
the range of the provided memory minus the existing code
memory. Increasing the resources on the sensor nodes is
not a viable solution if the goals mentioned above or the
general operating efficiency of the network are sacrificed.
Since many wireless sensor networks are utilized in
applications where the data gathered is confidential,
security has become a critical issue. Implementing any
form of security measures onto the sensor nodes requires
the use of resources that are already constrained in these
networks [1, 2].

1.2 General Security Issues

 The objective of any security method being utilized is to
maintain authentication, secrecy, and data integrity within
the network [6, 7]. Authentication involves the receiver of
a packet being able to validate that the alleged sender is in
fact the real sender and that it is a valid node of the
network. Secrecy (a.k.a. confidentiality) ensures that the
data sent is not received by unintended parties. Data
integrity ensures that the data received is the same as the
data that was sent.

 Different types of attacks on wireless sensor networks
focus on exploiting the resource constraints to cripple one
of the three parameters mentioned above [8]. An attacker
can passively eavesdrop on the communication occurring
within the network. By doing so, any of the sensitive
information that is being sensed by the nodes will be
available to the listening party. For a more active assault, a
malicious party could inject false packets into the network
that would be perceived as valid information by the other
nodes [9]. This also ties up network resources that could
have been used for legitimate packets. An attacker might
also alter the contents of a valid packet, which undermines
the authentication and data integrity of the network.

 Another assault that plagues wireless sensor networks is
the selective forwarding attack [8]. In this attack, the
adversary selectively forwards packets sent by other nodes
in the network which results in lost information. For this to
work, the malicious party needs to somehow include itself
into the actual path of the packets being sent. If a
compromised node has incorporated itself into the network
and is undetected, it could easily perform this attack since
the other nodes that consider it a neighbor would continue
to send it packets. Information such as network updates
vital to sensor network operation and packets containing
sensor values would be prevented from propagating
through the network correctly. This causes damage to the
traffic flow of the network as well.

 Most security algorithms employ some form of
cryptography where data is encoded and then decoded by
the base stations and sensor nodes of the wireless sensor
network [10]. Cryptography allows for authentication,
secrecy, and data integrity to be maintained within the
network. However, the security of many of the algorithms
degrades when one or more nodes have been compromised
[11, 12]. This is because the adversary now has the
cryptography keys that were used by a legitimate node.
The rest of the network would not be able to identify the
malicious node from a valid node if there are not additional
security measures included in the network.

1.3 Intrusion Detection Systems

 Intrusion detection systems are used to detect malicious
behaviors that can compromise the security and trust of a
given networking system [13]. They are generally
classified into two main types: misuse intrusion detection
(MID) and anomaly-based intrusion detection (AID) [14].
Both types strive for the same characteristics of a 100%
attack detection rate and a 0% false positive rate. A false
positive occurs when a legitimate node is identified as an
intruder. For obvious reasons, this is detrimental to the
integrity of the system.

 The MID systems work under the concept that the
attacks that plague a network exhibit certain unique
characteristics that can form a signature for said attack.
The individual attacks are introduced onto the network and
studied in order to look for patterns with which to identify
the attack. While the network is deployed, it is constantly
being monitored for activity that matches any of the
signatures. The problem with the MID systems is that
unknown attacks can pass through undetected.

 In AID systems, an assumption is made that the
intruder’s behavior deviates from the normal network
behavior. In this type of intrusion detection systems, each
sensor node will be monitoring its neighbors to keep track
of the normal behavior for a given set of parameters. Any
node that strays from its standard actions will trigger an

alarm in its neighbors. The disadvantage of the AID
systems is that there is a high false positive rate.

1.4 Challenges

 In this paper we present an anomaly-based intrusion
detection system that deals with the threat imposed by the
selective forwarding attack on wireless sensor networks.
When dealing with this type of environment, the resource
constraints that are characteristic of these networks was
taken into consideration. The additional code needed to
implement the proposed algorithm needed to work on top
of the existing code that manages all sensor operational
activities. It is crucial that the additional memory space
required for each node to store profiles containing
acceptable behavior information regarding its neighbors be
kept to a minimum. Any computations involved with
determining whether a node deviates from its normal
behavior was carefully weighed for usefulness and
necessity. These computations are to be performed for
every single incoming packet that a node receives from its
neighbors. Apart from the resource limitations, there is also
the wireless communication aspect to consider. The fact
that the all traffic within the network uses the same
communication channel implies a higher number of
packets lost and a higher number of packets dropped. This
affects the normal behavior profiles stored for the
neighboring nodes. There are also the questions of how to
efficiently determine a node as compromised and how to
propagate the identification of a compromised node to the
rest of the nodes in the network.

 The rest of the paper is organized as follows. Section 2
presents the related work. The new algorithm to detect
compromised sensor nodes is introduced in Section 3.
Simulation results and analysis are provided in Section 4.
Finally, Section 5 concludes the paper.

2. Related Work

2.1 Localization-based Anomaly Detection

 Many wireless sensor networks utilize a GPS system to
gather data regarding the location of the sensor nodes. In
large sensor networks, providing each node with GPS
capability might be too expensive; instead, many times
beacon nodes, which have a GPS receiver, are
implemented. These beacon nodes will know their own
location, and the other sensor nodes use these nodes to
figure out their own location in the network.
 Liu et al. propose a technique to detect malicious
beacon nodes [15]. They reason that it would be difficult
for a compromised beacon node to send undetected beacon
signals with the wrong location information. This is
because the location and beacon signal sent by the
malicious beacon node will both have to be falsified.

Beacon nodes in the network are given a set of node
identification numbers and keys that allow them to
communicate with the other beacon nodes of the network
while appearing to be a non-beacon node. Compromised
nodes are detected when a valid beacon node gets a beacon
signal from a malicious beacon node whose estimated
location based off the beacon signal is different from the
location given by the beacon signal. Attacks using locally
replayed beacon signals are discovered since it is difficult
for the compromised beacon node to achieve the expected
round trip time for communication between neighbors.

2.2 Neighbor Stability Based Anomaly Detection

 Onat and Miri developed an intrusion detection system
by exploiting certain characteristics of the sensor nodes,
like their stable neighborhood information [16]. The
network topology is many-to-one wherein the sensor nodes
send their information to a single or fixed destination along
paths that are more or less stable. Therefore, the HELLO
flood packets that nodes use to identify their neighbors
would not be needed throughout the lifetime of the
network. It was assumed that new nodes did not appear in
the network after initial deployment and that the nodes
were not mobile. Also, there were thought to be no changes
in transmission power levels. Every node in the network
had the ability to distinctively identify its neighboring
nodes. Each node used the same hardware and same
algorithm stack running on it. The sensor node clocks were
not synchronized with each other.

 Given the stability of the network that was assumed,
the sensors should know what to expect from their
neighbors. To further exploit this concept, two parameters
were chosen from the sensor network on which to store
information regarding their neighbors. A buffer containing
a predetermined number of packets is maintained in this
algorithm. These packets are used to calculate the range of
acceptable values of packet arrival rate and receive power
for subsequent packets. If the received values for these
parameters do not fall in range that is being constantly
updated, an intrusion is detected. The intrusion detection
system relied on the nodes to inform neighboring nodes of
its findings regarding a possible intruder in the network. If
a node hears these intruder messages from a set number of
its neighbors, it flags the suspected node as compromised.

2.3 Software-based Attestation Detection

 A different approach to detecting compromised nodes
involves using code attestation to validate the actual
program code running on the sensor nodes. Hardware-
based methods of attestation exist where a secure
coprocessor is utilized to check the memory contents of the
embedded device in question. Seshadri et al. developed a
SoftWare-based ATTestation technique (SWATT) [17].

 SWATT was designed with the intention of creating a
method to externally verify the code running on embedded
devices. A trusted verifier is the key component in
achieving the goal. The malicious node will contain at least
one line of code that is different from the expected code
running on legitimate sensors. The verifier has a copy of
the memory contents residing in legitimate nodes. The
verifier sends a “challenge” to the node, which it uses as
the input to a pseudo-random generator to create random
memory addresses. A checksum is performed in the device
on each of these memory addresses. The verifier runs the
same verification procedure locally to compute the
expected value of the checksum. This expected value is
compared to the value returned by the node in question.

 A compromised node that has altered the memory
contents would have to discern whether each memory
location created by the pseudo-random generator has been
changed. For SWATT to perform well enough in wireless
sensor networks, the additional time needed to perform this
check and run the verification procedure should be
noticeable to the verifier. The experiments were conducted
on a simulator contained in AVR studio version 4.0. The
results showed that the difference in time to compute the
checksum becomes more prominent as the number of
memory locations accessed increases.

3. The Anomaly-based Algorithm

3.1 Network Model and Notations

 The network model can be described as follows:

• Nodes are stationary and no new nodes are added
once the network is deployed;

• Sensor node clocks are not synchronized;
• All sensor nodes (except the base station) have the

same hardware and software;
• Sensors communicate with the base station in a

multi-hop manner;
• The base station is a fully trusted party and is

identifiable by the sensor nodes of the network

The following table lists the notation for base station.

The following table lists the notation for sensor nodes.

node_idp Node identifier of

node_ida Identifier of suspected compromised
node

node_idb Identifier of node that sent ALERT
alert_buffer[Y] buffer that stores the node_idb of last

Y ALERT messages received

received packet
arrival_time Arrival time of packet

based on system clock
arrival_time_buffer[N] Buffer that stores

information regarding
packets received for N
nodes

max_buffer_packets Maximum number of
packets to use for
arrival_time_buffer

num_buffer_packets Number of packets
already used for
arrival_time_buffer[N]

high_value Highest acceptable packet
arrival time

low_value Lowest acceptable packet
arrival time

transmission_time_buffer[X] Buffer that stores last X
transmission times

node_ids Identifier of sensor node
node_idcompr Identifier of compromised

nodes identified by base
station

node_idvalid Identifier of valid node
identified by base station

compromised[] buffer that stores node ids
of compromised nodes
identified by base station

3.2 The Algorithm

 The main idea of the new algorithm is that a
compromised node has to do something different compared
to the legitimate nodes of the network. The base station is
alerted to the presence of a potential compromised node
and uses code attestation to verify the possible threat. The
following pseudocode provides a basic idea of how the
algorithm works.

Pseudocode for Sensor Nodes

On {arrival of} packet
 If (node_idp != 0) AND (node_idp NOT in
 compromised[])
 If node_idp already in arrival_time_buffer
 If num_buffer_packets < max_buffer_packets
 If arrival_time > high_value
 high_value = arrival_time
 Else If arrival_time < low_value
 low_value = arrival_time
 End If
 Else
 If (arrival_time > high_value) OR
 (arrival_time < low_value)
 Send ALERT(node_idp, node_ids) to
 base station
 End If

 End If
 Else
 If max N not reached
 Add node_idp to arrival_time_buffer
 End If
 End If
 End If

On {arrival of} REQUEST_TRANSMISSION_TIMES()
 Send
 TRANSMISSION_TIMES(transmission_time_buffer)
 to base station

On {arrival of}
 COMPROMISED_NODE_FOUND(node_idcompr)
 Clear out any values in arrival_time_buffer for
 node_idcompr
 Add node_idcompr to compromised[]

On {arrival of} VALID_NODE_FOUND(node_idvalid)
 Update transmission_time_buffer values for node_idvalid

Pseudocode for Base Station

On {arrival of} ALERT(node_ida, node_idb)
 Send REQUESTION_TRANSMISSION_TIMES()
 to node_ida

On {arrival of}
TRANSMISSION_TIMES(transmission_time_buffer)
 For i < size of packet_ buffer
 If transmission_time _buffer[i] !=
 transmission_time _buffer[i + 1]
 Compromised node identified
 Send broadcast COMPROMISED_NODE
 _FOUND(node_ida)
 End If
 End For
 If compromised node not identified
 Send VALID_NODE_FOUND(node_idvalid) to
 node_idb
 End If

 The algorithm designed consists of essentially two
parts. The first part is the initialization phase during which
the sensor nodes start communicating with their neighbors.
Each time a packet comes in, the node_idp of the packet is
checked against the current entries in the
arrival_time_buffer[N]. If the node_idp is not found, an
entry is created for it if the maximum number of allowed
entries (max_buffer_packets) into the buffer has not been
reached. The arrival_time_buffer[N] stores the largest
arrival_time (high_value) and the smallest arrival_time
(low_value) calculated for max_buffer_packets. Enough
time was given to the nodes to get these values for N
neighbors. Each node of the network also keeps a buffer

that contains the last X transmission times of the packets it
sent.

 During the second part, the compromised nodes are
introduced into the network. A compromised node is one
that performs some function that is different from those
seen on legitimate nodes. In this paper, these nodes were
set to perform the selective forwarding attack. The
detection scheme works as follows. If the arrival_time of
the packet node B sends to node A does not fall within the
high_value and low_value that A has stored for B, node A
sends an ALERT message to the base station. The base
station then asks node B for its
transmission_time_buffer[X]. If these values are not
consistent, the base station labels node B as compromised.
The base station will then send a broadcast message
informing the nodes of the network to the presence of the
intruder. Once a sensor node receives this message, two
things happen. First, it clears out any entry it has in its
packet arrival time buffer for the intruder. Second, it adds
the node id of the intruder to compromised[], which allows
the node to cease all communication with the malicious
party.

 However, if the base station sees that the transmission
times of node B are consistent, it informs node A that node
B is not compromised. Node A will then update its high or
low value in the arrival_time_buffer[N] for node B
accordingly. By making the sensors update these values,
the number of ALERT message sent to the base station is
decreased, which decreases the number of packets injected
into the network by the algorithm.

 It should be noticed that the base station plays an
important role in the algorithm designed. It is a trusted
entity by all nodes of the network, which allows the base
station to verify whether a node is compromised or not and
for all the sensors to automatically accept this decision.
Therefore, the base station is assumed to be an
uncompromised node throughout the network lifetime. In
this algorithm, it would be ideal if the base station has a
higher processing speed than the other nodes since it either
sends or receives all the packets involved with the
detection part of the algorithm.

3.3 Attack Thwarted by the Algorithm

 In the selective forwarding attack that plagues wireless
sensor networks, packets that should be sent by a
compromised node if it was still a valid node are
selectively dropped. The compromised nodes purposely
eliciting malicious behavior will only perform this type of
attack. They will be valid nodes of the network that are set
to be compromised after a certain amount of time. The
other nodes of the network that consider this node a
neighbor should realize if there is a noticeable time
difference between incoming packets. When this happens,

they will send the ALERT message to the base station
which will in turn detect the differences in the transmission
time buffer of the compromised node. The selective
forwarding attack is defeated when the other nodes of the
network received the broadcast message sent by the base
station informing them to cease communication with the
malicious party.

4. Simulations and Analysis

 The TinyOS simulator TOSSIM [18] was chosen to
simulate the designed algorithm for detecting compromised
nodes in a wireless sensor network. To begin the
simulation process, there were several parameters altered
for different runs to determine what kind of effect they
had. The number of neighbors each node has was
determined by using the following equation

(Z % 10) + 1

where Z is the number of nodes in the network. The
number of packets used for the packet arrival time buffer
was experimented on, and the results showed that this
particular value did not have much of an effect unless a
high value was chosen. A larger number meant that the
initialization phase would last much longer than intended.
Therefore, 10 packets was the chosen value for each
simulation regardless of the network size.

 The number of values to be stored in the transmission
time buffer was kept at a constant value of 5 for all
simulation runs. This is because all legitimate nodes send
packets every 3 seconds. The transmission time buffer for
compromised nodes would not have consistent values, so a
higher number was not needed. The number of
compromised nodes to be introduced onto the network
equaled to the network size modulo 10. All compromised
were injected around the same time for each network size.
The larger networks needed more time in the initialization
phase which meant the larger the network, the more time
before compromised nodes were introduced.

 The sensor nodes are turned on at different times,
meaning the time elapsed since the simulator started can be
different from another node. The main reason for this is
that if all the nodes are turned on at the same time, there
would be constant collisions in the network. The packets
would all be jammed and communication in the network
would drop significantly. Also, in real applications of a
wireless sensor network, the sensor nodes would need to be
turned on manually and thus would not all have the same
time. The simulations were run until either all
compromised nodes were found or a problem was
discovered.

 Fig. 1 shows the average time it takes for all intruders
to be found after they have been introduced into the

network. The smaller networks take less time than the
larger networks for two main reasons. The first reason is
that there are more compromised nodes in the larger
networks, so more time is needed to detect all of them. The
second reason is that there is more traffic generated in the
larger networks, so it takes longer for the base station to
process all the requests.

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60

Ti
m

e
(s

ec
on

ds
)

Number of Nodes in Network

Figure 1. Average time to detect all compromised nodes

 What needs to be considered when looking at all of
these graphs is that 10% of the number of nodes in the
network was compromised, i.e., a network of 20 nodes will
have two compromised nodes. Since the base station needs
to service all ALERT messages, the time needed to identify
the additional nodes is higher in the larger sized networks.
This attributed to the larger number of packets propagating
through the network, which consequently leads to a higher
number of dropped packets. The alert messages buffer kept
by the base station aided in reducing the number of
ALERT messages ignored. A base station with better
computational resources would have helped to decrease the
amount of time necessary to detect the compromised
nodes. Also to keep in mind is that there is only one base
station for every network size. It is expected that it would
take longer to detect the compromised nodes in a larger
wireless sensor network

 Figure 2 shows the average number of packets sent by
a compromised node once it has been injected into the
network. The algorithm works efficiently since only a few
packets at most are sent compared to the hundreds of valid
packets. To get an idea of the ratio, the total number of
packets sent in the 20-node network was 1825.67 packets,
and the average number of compromised packets sent was
1.5. This means the number of packets sent by the
compromised nodes made up on average 0.0822% of all
traffic. Once the malicious party is found, any further
communication with the compromised node is
discontinued and any packets received from said party are
ignored.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60

C
om

pr
om

is
ed

 P
ac

ke
ts

Number of Nodes in Network

Figure 2. Average number of compromised packets sent

 As mentioned earlier, false positives are often a
problem when dealing with intrusion detection systems.
False positives occur when a valid node is labeled as a
compromised node in the network. When the number of
false positives increases, the efficiency of the algorithm
decreases significantly. In our algorithm, the trusted base
station takes care of this problem since there were no false
positives. In other words, a valid node was never identified
as a compromised node by the base station. Figure 3 shows
the number of false positives that were prevented by our
algorithm.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60

Fa
ls

e
Po

si
tiv

es

Number of Nodes in Network

Figure 3. Average number of false positives prevented

 In the next set of simulations, the network size is kept at
a constant value of 20 while the percentage of
compromised nodes is increased. The nodes do not detect
the anomalies in the packet arrival times until a packet is
actually sent. Therefore, it takes more time to detect them
when there are more compromised nodes performing the
same attack which is seen in Figure 4. The importance of
these figures is that as the number of compromised nodes
increases, the nodes and the base station are still able to
work together to discover the intruders.

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10

Ti
m

e
(s

ec
on

ds
)

Number of Compromised Nodes in 20 node Network

Figure 4. Average time to detect all compromised nodes

 Figure 5 shows the effect of the compromised nodes in
a 20-node network regarding the number of packets that
are sent while the node is compromised. Examining the
results shown in Figures 4 and 5 together indicates that the
malicious nodes are stopped quickly before they have
much time to wreak havoc in the network. Figure 5
basically implies that the average number of compromised
packets being sent is the same for all nodes since this
number fluctuates slightly around two packets per
compromised nodes, regardless of the number of
compromised nodes present in the network.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

C
om

pr
om

is
ed

 P
ac

ke
ts

Number of Compromised Nodes in 20 node Network

Figure 5. Average number of compromised packets sent
per compromised node

 Figure 6 presents the number of false positives that are
prevented from occurring within the network. What is
interesting to note here is that the number of false positives
decreases as the network size increases. This figure can be
explained by considering the fact the network size is
staying the same while the number of compromised nodes
performing the selective forwarding the attack increases.
Since more nodes are not sending packets, this means the
number of messages sent throughout the network is
decreased.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10

Fa
ls

e
Po

si
tiv

es

Number of Compromised Nodes in 20 node Network

Figure 6. Average number of false positives prevented

 Table 1 illustrates the overhead associated with
implementing the designed algorithm in a 20-node network
with two compromised nodes. The 2nd row represents the
packets sent by the sensors nodes during normal operation.
The 3rd row represents the communication involved with
identifying compromised nodes. This includes the ALERT
messages sent to the base station, the base station
requesting packet transmission time buffers, the response
the suspected node sends back, and the broadcast messages
sent by the base station identifying compromised nodes.
The packets sent by the base station indicating valid nodes
are represented in the 4th row. There is a decrease in the
number of packets associated with normal operation since
the sensor nodes are event-driven, and it takes time to
construct, process, and receive packets.

Table 1. Overhead of implementing the algorithm

Packets Sent Algorithm Average
Normal sensor nodes 1382.33
Compromised nodes 358.67
Base station 84.67

 The simulations we have performed mainly focus on the
performance in small networks. To conduct the analytical
study of our algorithm, larger network sizes are required.
Next, we analyze the detection rate of our algorithm in a
large sensor network.

 The detection rate, which is the probability of a
compromised node being detected by any of the non-
compromised nodes, is an important metric used to
measure the performance of the algorithm. Let us assume
that a compromised node sends messages that are received
by a fraction of receiving nodes ph, which will compute the
arrival time to be greater than the highest acceptable packet
arrival time, and pl, which will compute the arrival time to
be less than the lowest acceptable packet arrival time. The
probability of a compromised node being detected by one

node can be estimated by ph×pl. So, if there are d nodes
capable of detecting compromised nodes, the probability
Pd of a compromised node being detected by a normal
node can be estimated by

Pd = 1 – (1 – P)d

where P = ph×pl represents the probability that a normal
node receives a message from a compromised node. Figure
7 shows the relationship between the detection rate and the
probability of receiving a message from a compromised
node. In our algorithm, a sensor node, which alerts a base
station of a compromised node when the arrival time is
greater than the highest acceptable packet arrival time or
lesser than the lowest acceptable packet arrival time, is a
detector node.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
et

ec
tio

n
R

at
e

Probability of receiving message from compromised node

d=1
d=2
d=4
d=8

d=10

Figure 7 Detection rate vs. the probability of receiving
messages from a compromised node

 In Figure 7, we have plotted the values for Pd with
increasing values of P and the number of detecting nodes
(d). It can be seen that the detection rate of the algorithm
significantly improves as an increasing number of
messages from a compromised node are received by
detecting nodes. This leads to more computations of arrival
time by the detecting nodes and increases the number of
alerts received at the base station. With more alerts
generated in the network, the detection rate of the
algorithm increases. We also compare the detection rate of
the algorithm with the increasing number of detecting
nodes. We observe that the detection rate increases at a
faster rate as the number of detecting nodes increases. This
indicates a compromised node cannot go undetected if the
messages are received by a large number of detecting
nodes.

5. Conclusions

 We have presented an algorithm to detect the
compromised nodes in wireless sensor networks. The
algorithm is based on the anomaly-based intrusion
detection technique. It uses the event-driven characteristics

of sensor networks to verify whether a node is sending
packets in fixed time intervals. The base station is alerted
to claims of abnormal behavior and verifies them by
checking the difference in packet transmission times of the
suspected node. Efficiency and accuracy are two primary
metrics in designing the algorithm. Simulations are
conducted to demonstrate both performance metrics.
 Consequently, the base station itself was where the most
improvement could be made. We believe that a base
station that has more computation and power resources
would further decrease the detection time. If there was a
method provided to distinguish between the different types
of nodes, mainly the base station and sensor nodes, this
would have given a more realistic idea of the capability of
this algorithm where the base station is concerned. The
algorithm was still able to efficiently identify compromised
nodes and eliminate the occurrence of false positives. The
base station and sensor nodes cooperate to deal with
intruders performing the selective forwarding and
propagate this information, even in the face of network
problems including congestion.

References

[1] Yee Wei Law and Paul J.M. Havinga, “How to

Secure a Wireless Sensor Network,” Proceedings of
the 2005 International Conference on Intelligent
Sensors, Sensor Networks and Information
Processing Conference, Dec 2005, pp. 89 – 95.

[2] Adrian Perrig, John Stankovic, and David Wagner,
“Security in Wireless Sensor Networks,”
Communications of the ACM, Vol. 47, No. 6, Jun
2004, pp. 53 – 57.

[3] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.
Cayirci, “Wireless sensor networks: A survey,”
Computer Networks, vol. 38, no. 4, Mar 15, 2002, p
393-422.

[4] Marcos August0 M. Vieira, Claudionor N. Coelho Jr.,
Di6genes Cecilio da Silva Junior, and Jose M. da
Mata, “Survey on Wireless Sensor Network
Devices,” Proceedings of the ETFA ’03 IEEE
Conference on Emerging Technologies and Factory
Automation, vol. 1, Sep 2003, pp. 537 – 544.

[5] Sasha Slijepcevic, Miodrag Potkonjak, Vlasios
Tsiatsis, Scott Zimbeck, and Mani B. Srivastava, “On
Communication Security in Wireless Ad-Hoc Sensor
Networks,” Proceedings on the Eleventh IEEE
International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Jun 10 –
12, 2002, pp. 139 – 144.

[6] Elaine Shi and Adrian Perrig, “Designing Secure
Sensor Networks,” IEEE Wireless Communications,
Vol. 11, No. 6, Dec 2004, pp. 38 – 43.

[7] Chris Karlof, Naveen Sastry, and David Wagner,
“TinySec: A link layer security architecture for
wireless sensor networks,” Proceedings of the Second

International Conference on Embedded Networked
Sensor Systems, 2004, pp. 162-175.

[8] Chris Karlof and David Wagner, “Secure Routing in
Wireless Sensor Networks: Attacks and
Countermeasures,” Proceedings of the First IEEE
2003 IEEE International Workshop on Sensor
Network Protocols and Applications, May 11, 2003,
pp. 113 – 127.

[9] Paul Brutch and Calvin Ko, “Challenges in Intrusion
Detection for Wireless Ad-hoc Networks,”
Proceedings on the 2003 Symposium on Applications
and the Internet Workshops, Jan 27 – 31, 2003, pp.
363 – 373.

[10] Germano Guimaraes, Eduardo Souto, Djamel Sadok,
and Judith Kelner, “Evaluation of Security
Mechanisms in Wireless Sensor Networks,”
Proceedings of the 2005 Systems Communications,
2005, pp. 428 – 433.

[11] Harald Vogt, Matthias Ringwald, and Mario Strasser,
“Intrusion Detection and Failure Recovery in Sensor
Nodes,” in Tagungsband INFORMATIK 2005,
Workshop Proceedings, LNCS, Heidelberg,
Germany, Sep 2005. Springer-Verlag.

[12] Carl Hartung, James Balasalle, and Richard Han,
“Node Compromise in Sensor Networks: The Need
for Secure Systems,” Technical Report CU-CS-990-
05, Department of Computer Science, University of
Colorado at Boulder.

[13] Amitabh Mishra, Ketan Nadkarni, and Animesh
Patcha, “Intrusion Detection in Wireless Ad Hoc
Networks,” IEEE Wireless Communications, Vol.
11, No. 1, Feb 2004, pp. 48 – 60.

[14] Yoshinori Okazaki, Izuru Sato, and Shigeki Goto, “A
New Intrusion Detection Method based on Process
Profiling,” Proceedings of the 2002 Symposium on
Applications and the Internet 2002, Jan 28 - Feb 1,
2002, pp. 82 – 90.

[15] Donggang Liu, Peng Ning, and Wenliang Du,
“Detecting Malicious Beacon Nodes for Secure
Location Discovery in Wireless Sensor Networks,”
Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems
(ICDCS'05), pp. 609 – 619, 2005.

[16] Ilker Onat and Iand Ali Miri, “An Intrusion Detection
System for Wireless Sensor Networks,” IEEE
International Conference on Wireless and Mobile
Computing, Networking and Communications,
WiMob'2005, Vol. 3, 2005, pp. 253 – 259.

[17] Arvind Seshadri, Adrian Perrig, Leendert van Doorn,
and Pradeep Khosla, “SWATT: softWare-based
attestation for embedded devices,” Proceedings of the
2004 IEEE Symposium on Security and Privacy, May
9-12, 2004, pp. 272-282.

[18] Philip Levis, Nelson Lee, Matt Welsh, and David
Culler, “TOSSIM: Accurate and Scalable Simulation
of Entire TinyOS Applications,” Proceedings of the

First ACM Conference on Embedded Networked
Sensor Systems (SenSys), Nov 2003.

Mary Mathews is a PhD student in the Department of
Electrical and Computer Engineering Department at Old
Dominion University. She has been conducting research in
the security issues of wireless sensor networks. She has
studied different security applications and their efficiency
and feasibility with respect to wireless sensor networks.
She is the recipient of DOE GAANN Fellowship.

Min Song received his PhD in Computer Science from the
University of Toledo in 2001. Dr. Song is presently an
Associate Professor in the Department of Electrical and
Computer Engineering at Old Dominion University. His
research interests include protocols design and
performance analysis of mobile ad hoc networks and
wireless sensor networks, computer networks security,
wireless communications, and distributed data mining.
Since joining Old Dominion University in summer 2002,
Dr. Song has published more than 60 international journal
articles, book chapters, and conference papers, received
$1.4 million federal research funding, severed as a TPC
Chair, Session Chair, TPC member, and reviewer in more
than 30 international conferences, and an Editor/Guest
Editor of three international journals. Dr. Song is the
recipient of NSF CAREER Award. He received early
Tenure and Promotion in June 2007. Dr. Song is an IEEE
Senior Member.

Sachin Shetty received Bachelor of Science in Computer
Engineering from Mumbai University, India in 1998. He
received his Master of Science in Computer Science from
University of Toledo in 2002. He then earned his PhD
degree from Old Dominion University in 2007. He has
authored and co-authored 15 international refereed

conference publications and book chapters. His main
research areas are wireless network security, sensor
networks and distributed data mining.

Frederic (Rick) D. McKenzie is an Associate Professor of
Electrical and Computer Engineering at Old Dominion
University. Dr. McKenzie received his Ph.D. in Computer
Engineering from the University of Central Florida in
1994. Prior to joining ODU, he held a senior scientist
position at Science Applications International Corporation
(SAIC), serving as Principal Investigator for several
distributed simulation projects. At SAIC he was a Team
Lead on a large distributed simulation system. Before
joining SAIC, Dr. McKenzie worked as a student
researcher on research projects involving both NASA
Kennedy Space Center and NASA Marshall Space Flight
Center. He has several years of research and development
experience in the software and artificial intelligence fields,
including object-oriented design and knowledge-based
systems. Dr. McKenzie is an IEEE Senior Member.

