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Abstract 
 
     Wireless sensor networks are typically deployed in 
unattended and hostile environments which are vulnerable 
to compromises. An adversary can reprogram the sensors 
with malicious code to launch an intrusion attack. Once a 
sensor node has been compromised, the security of the 
network degrades quickly if there are not measures taken 
to deal with this event. In this paper, we develop an 
anomaly-based intrusion detection algorithm to detect 
compromised nodes in wireless sensor networks. The idea 
is to use packet arrival time as the primary parameter to 
differentiate the legitimate nodes and the suspicious nodes. 
Once the suspected node has been deemed compromised 
by the base station, this information is then propagated to 
the rest of the network. A simulator is developed to verify 
the algorithm design. Analysis and simulation results show 
that our algorithm is able to achieve high detection rate 
with lower false positives. 
 
Key words: sensor network, intrusion detection, algorithm 
 

1. Introduction 
 
     Wireless sensor networks are comprised of sensor nodes 
that are designed to gather information regarding 
environmental data such as light, temperature, sound, and 
pressure. Each individual node is comprised of one or more 
sensing devices, a processor, a communication unit, and a 
power supply [3, 4]. The actual sensors gather the data that 
represents the physical conditions being monitored once 
the network has been deployed. The sensor readings that 
are gathered periodically are sent to the processing unit 
that houses the data and program memory. This processing 
unit usually converts the data values into a human readable 
format if this is desired or needed. The operating system 
and other programs stored in the program memory dictate 
all operations of the sensor nodes while they are in use.  
While the power source of these devices normally comes 
in the form of a battery, there has been research conducted 
into other sources such as solar cells.  The wireless aspect 
of the communication in these sensor networks is usually 
achieved through a radio antenna, although some sensors 
have instituted infrared or laser communication schemes.      
In many deployments, each sensor node is given a unique 
identification number when the sensors are programmed.  
This means that node identification is part of the code in 
the program memory and is included in all outgoing 
packets sent to the rest of the network.   
 
 

 
 
1.1 Resource Constraints in Sensor Nodes 
 
     Sensor nodes are designed with the goals of being small 
in order to be utilized in different environments and 
relatively cheap so that many nodes can be deployed in the 
testing environments. This has lead to the sensor nodes 
having constraints in terms of low computation capability, 
limited memory, and short-lifetime power. Therefore, any 
security method added to these networks will inevitably 
consume some of these resources [5]. A good portion of 
the memory is already needed for the code that runs on the 
sensors that dictates to them what conditions to sense, 
when to sense the conditions, etc.. Additional code that is 
required to implement any algorithm needs to fall within 
the range of the provided memory minus the existing code 
memory. Increasing the resources on the sensor nodes is 
not a viable solution if the goals mentioned above or the 
general operating efficiency of the network are sacrificed.          
Since many wireless sensor networks are utilized in 
applications where the data gathered is confidential, 
security has become a critical issue. Implementing any 
form of security measures onto the sensor nodes requires 
the use of resources that are already constrained in these 
networks [1, 2]. 
 
1.2 General Security Issues 
 
     The objective of any security method being utilized is to 
maintain authentication, secrecy, and data integrity within 
the network [6, 7]. Authentication involves the receiver of 
a packet being able to validate that the alleged sender is in 
fact the real sender and that it is a valid node of the 
network.  Secrecy (a.k.a. confidentiality) ensures that the 
data sent is not received by unintended parties.  Data 
integrity ensures that the data received is the same as the 
data that was sent. 
 
     Different types of attacks on wireless sensor networks 
focus on exploiting the resource constraints to cripple one 
of the three parameters mentioned above [8]. An attacker 
can passively eavesdrop on the communication occurring 
within the network. By doing so, any of the sensitive 
information that is being sensed by the nodes will be 
available to the listening party.  For a more active assault, a 
malicious party could inject false packets into the network 
that would be perceived as valid information by the other 
nodes [9]. This also ties up network resources that could 
have been used for legitimate packets.  An attacker might 
also alter the contents of a valid packet, which undermines 
the authentication and data integrity of the network. 



     Another assault that plagues wireless sensor networks is 
the selective forwarding attack [8]. In this attack, the 
adversary selectively forwards packets sent by other nodes 
in the network which results in lost information. For this to 
work, the malicious party needs to somehow include itself 
into the actual path of the packets being sent. If a 
compromised node has incorporated itself into the network 
and is undetected, it could easily perform this attack since 
the other nodes that consider it a neighbor would continue 
to send it packets. Information such as network updates 
vital to sensor network operation and packets containing 
sensor values would be prevented from propagating 
through the network correctly.  This causes damage to the 
traffic flow of the network as well. 
 
      Most security algorithms employ some form of 
cryptography where data is encoded and then decoded by 
the base stations and sensor nodes of the wireless sensor 
network [10]. Cryptography allows for authentication, 
secrecy, and data integrity to be maintained within the 
network. However, the security of many of the algorithms 
degrades when one or more nodes have been compromised 
[11, 12]. This is because the adversary now has the 
cryptography keys that were used by a legitimate node.  
The rest of the network would not be able to identify the 
malicious node from a valid node if there are not additional 
security measures included in the network. 
 
1.3 Intrusion Detection Systems 
 
     Intrusion detection systems are used to detect malicious 
behaviors that can compromise the security and trust of a 
given networking system [13]. They are generally 
classified into two main types: misuse intrusion detection 
(MID) and anomaly-based intrusion detection (AID) [14].  
Both types strive for the same characteristics of a 100% 
attack detection rate and a 0% false positive rate. A false 
positive occurs when a legitimate node is identified as an 
intruder. For obvious reasons, this is detrimental to the 
integrity of the system. 
 
      The MID systems work under the concept that the 
attacks that plague a network exhibit certain unique 
characteristics that can form a signature for said attack.  
The individual attacks are introduced onto the network and 
studied in order to look for patterns with which to identify 
the attack. While the network is deployed, it is constantly 
being monitored for activity that matches any of the 
signatures. The problem with the MID systems is that 
unknown attacks can pass through undetected. 
 
      In AID systems, an assumption is made that the 
intruder’s behavior deviates from the normal network 
behavior. In this type of intrusion detection systems, each 
sensor node will be monitoring its neighbors to keep track 
of the normal behavior for a given set of parameters.  Any 
node that strays from its standard actions will trigger an 

alarm in its neighbors. The disadvantage of the AID 
systems is that there is a high false positive rate. 
 
1.4 Challenges 
 
     In this paper we present an anomaly-based intrusion 
detection system that deals with the threat imposed by the 
selective forwarding attack on wireless sensor networks.  
When dealing with this type of environment, the resource 
constraints that are characteristic of these networks was 
taken into consideration. The additional code needed to 
implement the proposed algorithm needed to work on top 
of the existing code that manages all sensor operational 
activities. It is crucial that the additional memory space 
required for each node to store profiles containing 
acceptable behavior information regarding its neighbors be 
kept to a minimum. Any computations involved with 
determining whether a node deviates from its normal 
behavior was carefully weighed for usefulness and 
necessity. These computations are to be performed for 
every single incoming packet that a node receives from its 
neighbors. Apart from the resource limitations, there is also 
the wireless communication aspect to consider. The fact 
that the all traffic within the network uses the same 
communication channel implies a higher number of 
packets lost and a higher number of packets dropped. This 
affects the normal behavior profiles stored for the 
neighboring nodes. There are also the questions of how to 
efficiently determine a node as compromised and how to 
propagate the identification of a compromised node to the 
rest of the nodes in the network. 
 
      The rest of the paper is organized as follows. Section 2 
presents the related work. The new algorithm to detect 
compromised sensor nodes is introduced in Section 3. 
Simulation results and analysis are provided in Section 4. 
Finally, Section 5 concludes the paper. 
 
 
2. Related Work 
 
2.1 Localization-based Anomaly Detection 
 
      Many wireless sensor networks utilize a GPS system to 
gather data regarding the location of the sensor nodes. In 
large sensor networks, providing each node with GPS 
capability might be too expensive; instead, many times 
beacon nodes, which have a GPS receiver, are 
implemented. These beacon nodes will know their own 
location, and the other sensor nodes use these nodes to 
figure out their own location in the network. 
      Liu et al. propose a technique to detect malicious 
beacon nodes [15]. They reason that it would be difficult 
for a compromised beacon node to send undetected beacon 
signals with the wrong location information. This is 
because the location and beacon signal sent by the 
malicious beacon node will both have to be falsified.  



Beacon nodes in the network are given a set of node 
identification numbers and keys that allow them to 
communicate with the other beacon nodes of the network 
while appearing to be a non-beacon node. Compromised 
nodes are detected when a valid beacon node gets a beacon 
signal from a malicious beacon node whose estimated 
location based off the beacon signal is different from the 
location given by the beacon signal. Attacks using locally 
replayed beacon signals are discovered since it is difficult 
for the compromised beacon node to achieve the expected 
round trip time for communication between neighbors. 
 
2.2 Neighbor Stability Based Anomaly Detection 
 
      Onat and Miri developed an intrusion detection system 
by exploiting certain characteristics of the sensor nodes, 
like their stable neighborhood information [16]. The 
network topology is many-to-one wherein the sensor nodes 
send their information to a single or fixed destination along 
paths that are more or less stable. Therefore, the HELLO 
flood packets that nodes use to identify their neighbors 
would not be needed throughout the lifetime of the 
network. It was assumed that new nodes did not appear in 
the network after initial deployment and that the nodes 
were not mobile. Also, there were thought to be no changes 
in transmission power levels.  Every node in the network 
had the ability to distinctively identify its neighboring 
nodes. Each node used the same hardware and same 
algorithm stack running on it. The sensor node clocks were 
not synchronized with each other. 
 
      Given the stability of the network that was assumed, 
the sensors should know what to expect from their 
neighbors. To further exploit this concept, two parameters 
were chosen from the sensor network on which to store 
information regarding their neighbors.  A buffer containing 
a predetermined number of packets is maintained in this 
algorithm. These packets are used to calculate the range of 
acceptable values of packet arrival rate and receive power 
for subsequent packets. If the received values for these 
parameters do not fall in range that is being constantly 
updated, an intrusion is detected. The intrusion detection 
system relied on the nodes to inform neighboring nodes of 
its findings regarding a possible intruder in the network. If 
a node hears these intruder messages from a set number of 
its neighbors, it flags the suspected node as compromised. 
 
2.3 Software-based Attestation Detection 
 
      A different approach to detecting compromised nodes 
involves using code attestation to validate the actual 
program code running on the sensor nodes. Hardware-
based methods of attestation exist where a secure 
coprocessor is utilized to check the memory contents of the 
embedded device in question.  Seshadri et al. developed a 
SoftWare-based ATTestation technique (SWATT) [17].        
 

      SWATT was designed with the intention of creating a 
method to externally verify the code running on embedded 
devices. A trusted verifier is the key component in 
achieving the goal. The malicious node will contain at least 
one line of code that is different from the expected code 
running on legitimate sensors.  The verifier has a copy of 
the memory contents residing in legitimate nodes.  The 
verifier sends a “challenge” to the node, which it uses as 
the input to a pseudo-random generator to create random 
memory addresses. A checksum is performed in the device 
on each of these memory addresses. The verifier runs the 
same verification procedure locally to compute the 
expected value of the checksum. This expected value is 
compared to the value returned by the node in question. 
 
      A compromised node that has altered the memory 
contents would have to discern whether each memory 
location created by the pseudo-random generator has been 
changed. For SWATT to perform well enough in wireless 
sensor networks, the additional time needed to perform this 
check and run the verification procedure should be 
noticeable to the verifier. The experiments were conducted 
on a simulator contained in AVR studio version 4.0. The 
results showed that the difference in time to compute the 
checksum becomes more prominent as the number of 
memory locations accessed increases.  
 
 
3.  The Anomaly-based Algorithm 
 
3.1 Network Model and Notations 
 
      The network model can be described as follows: 

• Nodes are stationary and no new nodes are added 
once the network is deployed; 

• Sensor node clocks are not synchronized; 
• All sensor nodes (except the base station) have the 

same hardware and software; 
• Sensors communicate with the base station in a 

multi-hop manner; 
• The base station is a fully trusted party and is 

identifiable by the sensor nodes of the network 
 
The following table lists the notation for base station. 
 

 
 
The following table lists the notation for sensor nodes. 
 
 

node_idp Node identifier of 

node_ida Identifier of suspected compromised 
node 

node_idb Identifier  of node that sent ALERT 
alert_buffer[Y] buffer that stores the node_idb of last 

Y ALERT messages received 



received packet 
arrival_time Arrival time of packet 

based on system clock 
arrival_time_buffer[N] Buffer that stores 

information regarding 
packets received for N 
nodes 

max_buffer_packets Maximum number of 
packets to use for 
arrival_time_buffer 

num_buffer_packets Number of packets 
already used for 
arrival_time_buffer[N] 

high_value Highest acceptable packet 
arrival time 

low_value Lowest acceptable packet 
arrival time 

transmission_time_buffer[X] Buffer that stores last X 
transmission times 

node_ids Identifier of sensor node 
node_idcompr Identifier of compromised 

nodes identified by base 
station 

node_idvalid Identifier of valid node 
identified by base station 

compromised[] buffer that stores node ids 
of compromised nodes 
identified by base station 

 
3.2 The Algorithm 
 
      The main idea of the new algorithm is that a 
compromised node has to do something different compared 
to the legitimate nodes of the network. The base station is 
alerted to the presence of a potential compromised node 
and uses code attestation to verify the possible threat. The 
following pseudocode provides a basic idea of how the 
algorithm works. 
 
Pseudocode for Sensor Nodes 
 
On {arrival of} packet 
     If (node_idp != 0) AND (node_idp NOT in  
     compromised[]) 
          If node_idp already in arrival_time_buffer 
               If num_buffer_packets < max_buffer_packets 
                    If arrival_time > high_value 
                         high_value = arrival_time 
                    Else If arrival_time < low_value 
                        low_value = arrival_time 
                    End If 
               Else 
                    If (arrival_time > high_value) OR                 
                    (arrival_time < low_value) 
                         Send ALERT(node_idp, node_ids) to  
                         base station 
                    End If 

               End If 
          Else 
               If max N not reached 
                    Add  node_idp to arrival_time_buffer 
               End If 
          End If 
     End If 
 
On {arrival of} REQUEST_TRANSMISSION_TIMES() 
     Send   
        TRANSMISSION_TIMES(transmission_time_buffer) 
         to base station 
 
On {arrival of}  
     COMPROMISED_NODE_FOUND(node_idcompr) 
     Clear out any values in arrival_time_buffer for  
          node_idcompr   
     Add node_idcompr to compromised[] 
 
On {arrival of} VALID_NODE_FOUND(node_idvalid) 
     Update transmission_time_buffer values for node_idvalid 
 
Pseudocode for Base Station 
 
On {arrival of} ALERT(node_ida, node_idb) 
     Send REQUESTION_TRANSMISSION_TIMES()  
     to node_ida 
 
On {arrival of} 
TRANSMISSION_TIMES(transmission_time_buffer) 
     For i < size of packet_ buffer 
          If transmission_time _buffer[i] !=  
                         transmission_time  _buffer[i + 1] 
               Compromised node identified 
               Send broadcast COMPROMISED_NODE   
               _FOUND(node_ida) 
          End If 
     End For 
     If compromised node not identified 
          Send VALID_NODE_FOUND(node_idvalid) to   
          node_idb 
     End If 
 
      The algorithm designed consists of essentially two 
parts.  The first part is the initialization phase during which 
the sensor nodes start communicating with their neighbors.  
Each time a packet comes in, the node_idp of the packet is 
checked against the current entries in the 
arrival_time_buffer[N]. If the node_idp is not found, an 
entry is created for it if the maximum number of allowed 
entries (max_buffer_packets) into the buffer has not been 
reached. The arrival_time_buffer[N] stores the largest 
arrival_time (high_value) and the smallest arrival_time 
(low_value) calculated for max_buffer_packets. Enough 
time was given to the nodes to get these values for N 
neighbors.  Each node of the network also keeps a buffer 



that contains the last X transmission times of the packets it 
sent. 
 
      During the second part, the compromised nodes are 
introduced into the network. A compromised node is one 
that performs some function that is different from those 
seen on legitimate nodes. In this paper, these nodes were 
set to perform the selective forwarding attack. The 
detection scheme works as follows.  If the arrival_time of 
the packet node B sends to node A does not fall within the 
high_value and low_value that A has stored for B, node A 
sends an ALERT message to the base station.  The base 
station then asks node B for its 
transmission_time_buffer[X]. If these values are not 
consistent, the base station labels node B as compromised.  
The base station will then send a broadcast message 
informing the nodes of the network to the presence of the 
intruder. Once a sensor node receives this message, two 
things happen. First, it clears out any entry it has in its 
packet arrival time buffer for the intruder.  Second, it adds 
the node id of the intruder to compromised[], which allows 
the node to cease all communication with the malicious 
party. 
 
      However, if the base station sees that the transmission 
times of node B are consistent, it informs node A that node 
B is not compromised.  Node A will then update its high or 
low value in the arrival_time_buffer[N] for node B 
accordingly. By making the sensors update these values, 
the number of ALERT message sent to the base station is 
decreased, which decreases the number of packets injected 
into the network by the algorithm. 
 
      It should be noticed that the base station plays an 
important role in the algorithm designed.  It is a trusted 
entity by all nodes of the network, which allows the base 
station to verify whether a node is compromised or not and 
for all the sensors to automatically accept this decision. 
Therefore, the base station is assumed to be an 
uncompromised node throughout the network lifetime. In 
this algorithm, it would be ideal if the base station has a 
higher processing speed than the other nodes since it either 
sends or receives all the packets involved with the 
detection part of the algorithm. 
 
3.3 Attack Thwarted by the Algorithm 
 
     In the selective forwarding attack that plagues wireless 
sensor networks, packets that should be sent by a 
compromised node if it was still a valid node are 
selectively dropped. The compromised nodes purposely 
eliciting malicious behavior will only perform this type of 
attack. They will be valid nodes of the network that are set 
to be compromised after a certain amount of time. The 
other nodes of the network that consider this node a 
neighbor should realize if there is a noticeable time 
difference between incoming packets. When this happens, 

they will send the ALERT message to the base station 
which will in turn detect the differences in the transmission 
time buffer of the compromised node. The selective 
forwarding attack is defeated when the other nodes of the 
network received the broadcast message sent by the base 
station informing them to cease communication with the 
malicious party. 
 
 
4. Simulations and Analysis 
 
      The TinyOS simulator TOSSIM [18] was chosen to 
simulate the designed algorithm for detecting compromised 
nodes in a wireless sensor network. To begin the 
simulation process, there were several parameters altered 
for different runs to determine what kind of effect they 
had. The number of neighbors each node has was 
determined by using the following equation 

(Z % 10) + 1 

where Z is the number of nodes in the network. The 
number of packets used for the packet arrival time buffer 
was experimented on, and the results showed that this 
particular value did not have much of an effect unless a 
high value was chosen. A larger number meant that the 
initialization phase would last much longer than intended. 
Therefore, 10 packets was the chosen value for each 
simulation regardless of the network size. 
 
     The number of values to be stored in the transmission 
time buffer was kept at a constant value of 5 for all 
simulation runs. This is because all legitimate nodes send 
packets every 3 seconds. The transmission time buffer for 
compromised nodes would not have consistent values, so a 
higher number was not needed. The number of 
compromised nodes to be introduced onto the network 
equaled to the network size modulo 10. All compromised 
were injected around the same time for each network size. 
The larger networks needed more time in the initialization 
phase which meant the larger the network, the more time 
before compromised nodes were introduced. 
 
     The sensor nodes are turned on at different times, 
meaning the time elapsed since the simulator started can be 
different from another node. The main reason for this is 
that if all the nodes are turned on at the same time, there 
would be constant collisions in the network. The packets 
would all be jammed and communication in the network 
would drop significantly.  Also, in real applications of a 
wireless sensor network, the sensor nodes would need to be 
turned on manually and thus would not all have the same 
time. The simulations were run until either all 
compromised nodes were found or a problem was 
discovered.  
 
      Fig. 1 shows the average time it takes for all intruders 
to be found after they have been introduced into the 



network.  The smaller networks take less time than the 
larger networks for two main reasons. The first reason is 
that there are more compromised nodes in the larger 
networks, so more time is needed to detect all of them. The 
second reason is that there is more traffic generated in the 
larger networks, so it takes longer for the base station to 
process all the requests. 
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Figure 1.  Average time to detect all compromised nodes 
 
 
     What needs to be considered when looking at all of 
these graphs is that 10% of the number of nodes in the 
network was compromised, i.e., a network of 20 nodes will 
have two compromised nodes. Since the base station needs 
to service all ALERT messages, the time needed to identify 
the additional nodes is higher in the larger sized networks. 
This attributed to the larger number of packets propagating 
through the network, which consequently leads to a higher 
number of dropped packets. The alert messages buffer kept 
by the base station aided in reducing the number of 
ALERT messages ignored. A base station with better 
computational resources would have helped to decrease the 
amount of time necessary to detect the compromised 
nodes. Also to keep in mind is that there is only one base 
station for every network size.  It is expected that it would 
take longer to detect the compromised nodes in a larger 
wireless sensor network 
 
      Figure 2 shows the average number of packets sent by 
a compromised node once it has been injected into the 
network.  The algorithm works efficiently since only a few 
packets at most are sent compared to the hundreds of valid 
packets. To get an idea of the ratio, the total number of 
packets sent in the 20-node network was 1825.67 packets, 
and the average number of compromised packets sent was 
1.5. This means the number of packets sent by the 
compromised nodes made up on average 0.0822% of all 
traffic. Once the malicious party is found, any further 
communication with the compromised node is 
discontinued and any packets received from said party are 
ignored. 
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Figure 2.  Average number of compromised packets sent 
 
 
      As mentioned earlier, false positives are often a 
problem when dealing with intrusion detection systems.  
False positives occur when a valid node is labeled as a 
compromised node in the network. When the number of 
false positives increases, the efficiency of the algorithm 
decreases significantly.  In our algorithm, the trusted base 
station takes care of this problem since there were no false 
positives. In other words, a valid node was never identified 
as a compromised node by the base station. Figure 3 shows 
the number of false positives that were prevented by our 
algorithm. 
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Figure 3.  Average number of false positives prevented 
 
 
     In the next set of simulations, the network size is kept at 
a constant value of 20 while the percentage of 
compromised nodes is increased. The nodes do not detect 
the anomalies in the packet arrival times until a packet is 
actually sent. Therefore, it takes more time to detect them 
when there are more compromised nodes performing the 
same attack which is seen in Figure 4.  The importance of 
these figures is that as the number of compromised nodes 
increases, the nodes and the base station are still able to 
work together to discover the intruders. 
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Figure 4.  Average time to detect all compromised nodes 
 
 
     Figure 5 shows the effect of the compromised nodes in 
a 20-node network regarding the number of packets that 
are sent while the node is compromised. Examining the 
results shown in Figures 4 and 5 together indicates that the 
malicious nodes are stopped quickly before they have 
much time to wreak havoc in the network. Figure 5 
basically implies that the average number of compromised 
packets being sent is the same for all nodes since this 
number fluctuates slightly around two packets per 
compromised nodes, regardless of the number of 
compromised nodes present in the network. 
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Figure 5.  Average number of compromised packets sent 
per compromised node 
 
 
     Figure 6 presents the number of false positives that are 
prevented from occurring within the network. What is 
interesting to note here is that the number of false positives 
decreases as the network size increases. This figure can be 
explained by considering the fact the network size is 
staying the same while the number of compromised nodes 
performing the selective forwarding the attack increases.  
Since more nodes are not sending packets, this means the 
number of messages sent throughout the network is 
decreased. 
 

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  2  4  6  8  10

Fa
ls

e 
Po

si
tiv

es

Number of Compromised Nodes in 20 node Network  
 

Figure 6.  Average number of false positives prevented 
 
 
     Table 1 illustrates the overhead associated with 
implementing the designed algorithm in a 20-node network 
with two compromised nodes. The 2nd row represents the 
packets sent by the sensors nodes during normal operation. 
The 3rd row represents the communication involved with 
identifying compromised nodes. This includes the ALERT 
messages sent to the base station, the base station 
requesting packet transmission time buffers, the response 
the suspected node sends back, and the broadcast messages 
sent by the base station identifying compromised nodes.  
The packets sent by the base station indicating valid nodes 
are represented in the 4th row. There is a decrease in the 
number of packets associated with normal operation since 
the sensor nodes are event-driven, and it takes time to 
construct, process, and receive packets. 
 
Table 1.  Overhead of implementing the algorithm 
 

Packets Sent Algorithm Average 
Normal sensor nodes 1382.33 
Compromised nodes 358.67 
Base station 84.67 

 
 
     The simulations we have performed mainly focus on the 
performance in small networks. To conduct the analytical 
study of our algorithm, larger network sizes are required. 
Next, we analyze the detection rate of our algorithm in a 
large sensor network. 
 
     The detection rate, which is the probability of a 
compromised node being detected by any of the non-
compromised nodes, is an important metric used to 
measure the performance of the algorithm. Let us assume 
that a compromised node sends messages that are received 
by a fraction of receiving nodes ph, which will compute the 
arrival time to be greater than the highest acceptable packet 
arrival time, and pl, which will compute the arrival time to 
be less than the lowest acceptable packet arrival time. The 
probability of a compromised node being detected by one 



node can be estimated by ph×pl. So, if there are d nodes 
capable of detecting compromised nodes, the probability 
Pd of a compromised node being detected by a normal 
node can be estimated by 

Pd = 1 – (1 – P)d 

where P = ph×pl represents the probability that a normal 
node receives a message from a compromised node. Figure 
7 shows the relationship between the detection rate and the 
probability of receiving a message from a compromised 
node. In our algorithm, a sensor node, which alerts a base 
station of a compromised node when the arrival time is 
greater than the highest acceptable packet arrival time or 
lesser than the lowest acceptable packet arrival time, is a 
detector node.  
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Figure 7 Detection rate vs. the probability of receiving 
messages from a compromised node 

 
 
     In Figure 7, we have plotted the values for Pd with 
increasing values of P and the number of detecting nodes 
(d). It can be seen that the detection rate of the algorithm 
significantly improves as an increasing number of 
messages from a compromised node are received by 
detecting nodes. This leads to more computations of arrival 
time by the detecting nodes and increases the number of 
alerts received at the base station. With more alerts 
generated in the network, the detection rate of the 
algorithm increases. We also compare the detection rate of 
the algorithm with the increasing number of detecting 
nodes.  We observe that the detection rate increases at a 
faster rate as the number of detecting nodes increases. This 
indicates a compromised node cannot go undetected if the 
messages are received by a large number of detecting 
nodes.  
 
5. Conclusions 
 
     We have presented an algorithm to detect the 
compromised nodes in wireless sensor networks. The 
algorithm is based on the anomaly-based intrusion 
detection technique. It uses the event-driven characteristics 

of sensor networks to verify whether a node is sending 
packets in fixed time intervals. The base station is alerted 
to claims of abnormal behavior and verifies them by 
checking the difference in packet transmission times of the 
suspected node. Efficiency and accuracy are two primary 
metrics in designing the algorithm. Simulations are 
conducted to demonstrate both performance metrics. 
     Consequently, the base station itself was where the most 
improvement could be made.  We believe that a base 
station that has more computation and power resources 
would further decrease the detection time.  If there was a 
method provided to distinguish between the different types 
of nodes, mainly the base station and sensor nodes, this 
would have given a more realistic idea of the capability of 
this algorithm where the base station is concerned.  The 
algorithm was still able to efficiently identify compromised 
nodes and eliminate the occurrence of false positives.  The 
base station and sensor nodes cooperate to deal with 
intruders performing the selective forwarding and 
propagate this information, even in the face of network 
problems including congestion. 
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