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Abstract—One approach for information dissemination in 

large-scale communication systems is using epidemic protocols. 
Current epidemic protocols, however, adopt a constant fanout 
policy, which does not enable end users to control the 
information dissemination process. For distributed applications 
that need to compute a global function within a pre-determined 
response time, better procedures to control the information 
dissemination process have to be developed. In this paper, we 
introduce two distributed adaptive epidemic protocols using a 
dynamic fanout scheme. They are named Round-Based dynamic 
fanout (RBdf) and Cluster-Based dynamic fanout (CBdf). In 
RBdf, the network topology is flat and each node transmits a 
message with a varied fanout every round. In CBdf, the 
network topology is hierarchical, and the fanout values in every 
cluster differ within the same round. The main objectives are to 
ensure that peers receive messages within a bounded latency 
and that the system message overhead is a bounded value. The 
performance of the proposed protocols are verified through 
both theoretical and simulation studies. 
 
1. INTRODUCTION 
 
One approach for information dissemination in large-scale 
communication systems is using epidemic protocols. An 
epidemic protocol proceeds through asynchronous rounds 
before the information is reliably disseminated to every node.  
A round is defined as the time taken for all nodes to 
disseminate a message to their neighboring nodes. In the 
basic epidemic protocol, every node within the system is 
potentially involved in the information dissemination 
process. A peer node that has delivered a given message will 
be termed infective, otherwise susceptible. Basically, every 
node buffers every message received up to a certain buffer 
capacity and forwards every message a limited number of 
rounds. The node forwards the message each time to a 
randomly selected set of nodes. The size of this set is called 
fanout. The use of epidemic protocols has been explored in 
applications such as reliable multicast [14], failure detection 
[17], data aggregation [7,10], resource discovery and 
monitoring [18], and database replication [4]. Each of these 
applications implements different variations of the basic 
epidemic protocol. For instance, in [10], the aggregation 
protocol is based on the simple “push-pull gossiping” 
scheme. In this scheme, every node executes two different 
threads. The active thread periodically initiates an 

information exchange with one random neighbor. The 
passive thread waits for messages sent by one sender. We 
observe that in most of the epidemic protocols, fanout is kept 
a constant which is based on the assumption that every peer 
possesses uniform and independent membership. This 
assumption is not valid in practical applications where every 
peer cannot be expected to be infected independently of other 
peers. Moreover, a constant fanout is only applicable in 
scenarios where the total number of infected nodes in every 
round is immaterial. But this may not be the case wherein a 
controlled infection pattern is expected. The infection pattern 
is a frequency distribution specifying the number of nodes 
that are expected to be infected at the end of a round. By 
controlling the infection pattern, the end user has a better 
control over the overall latency and message overhead of the 
information dissemination process. 

In this paper, we introduce two distributed adaptive epidemic 
protocols using a dynamic fanout scheme. They are named 
Round-Based dynamic fanout (RBdf) and Cluster-Based 
dynamic fanout (CBdf). In RBdf, the network topology is flat 
and each node transmits a message with a varied fanout 
every round. The fanout values are quantified based on the 
infection pattern and redundancy message pattern over 
rounds, but the fanout remains constant within a round. In 
CBdf, the network topology is hierarchical, and the fanout 
values in every cluster differ within the same round. Nodes 
are clustered based on a geographic proximity criterion and 
fanouts vary between clusters of nodes. This implies that 
during each round, nodes in different clusters disseminate 
information using different fanout values. In both 
approaches, the number of messages generated is bounded by 

( log )O n n , where n is the total number of nodes in the 
system. In spite of ensuring user-controlled information 
dissemination, the lower bound on the message overhead for 
both the approaches is the same as the one achieved in 
epidemic protocols with a constant fanout [3,14].  

The rest of the paper is organized as follow. In Section 2, we 
present the related work for epidemic protocols. Section 3 
introduces RBdf, and Section 4 presents CBdf. For both 
protocols, theoretical analysis is provided. Section 5 gives 
simulation results supporting the analysis. Section 6 
concludes the paper and discusses the future work. 
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2. RELATED WORK 
 
As mentioned in the introduction section, most of the 
epidemic protocols in the literature usually adopt a constant 
fanout [2, 17, 5, 13]. The Bimodal multicast scheme [2] and 
probabilistic multicast [17] schemes adopt a constant fanout 
of 1. The gossip protocols for publish/subscribe systems [5] 
specify constant fanout values based on network size. In 
particular, the fanout values are increased as the network size 
increases. For systems with dynamic behavior where 
information is changing continuously, a spatial epidemic 
protocol [13] bounds propagation time by a poly-logarithmic 
function in distance by choosing epidemic targets with a 
probability which is an inverse polynomial function of 
distance. The fanout is assumed to be a constant of one. In 
[12], it is discussed that a generic gossip protocol needs 

( log )O n n  messages to spread a rumor.  

The very first attempt to compute an optimal value for the 
fanout in a probabilistic reliable information dissemination 
process was performed by [14]. They computed the fanout 
needed to deliver information to all nodes with a high 
probability by using random graphs. They show that a fanout 
in the order of log( ) (1)n c o+ + gives a success probability 
of cee

−− , where c is a design parameter whose value ranges 
from 0 to 1. The reliability of this gossip-based protocol is 
related to key system parameters (system size, failure rates, 
and the number of gossip targets).  

3. ROUND BASED DYNAMIC FANOUT  
 

The basic idea underlying our approach, inspired by the work 
presented in [5], is as follows. Each peer maintains a fixed 
size view of member peers. This view is sorted according to 
their network distance estimates. Therefore, the first position 
in the view holds the closest peer known so far. During the 
protocol initialization phase, views need to be initialized with 
a random sample of nodes taken from the whole peer-to-peer 
network. For this purpose, we use Newscast [11] to build and 
maintain an approximately random-graph overlay topology.  
In order to evolve the topology, peers exchange views in an 
epidemic fashion. Periodically, each peer actively selects a 
neighbor from its view and starts a view exchange process 
(see pseudo-code in Fig. 1). Each peer node execution 
implements two threads. The active thread is shown in Fig. 
1a, and the passive thread is shown in Fig. 1b. In the active 
thread, every peer node picks the set of random neighbors 
based on the round-based fanout. The round-based fanout is 
computed based on user specifications, which are specified 
as an infection pattern over rounds. The peer node sends the 
message and its local view to this set of random neighbors. 
Once the remote peer’s view has been received, it is merged 
with the local one. This merge operation preserves the 
ordering of the local view, i.e., newly received member peers 
are sorted in accordance with their network distance 
estimates. 
 
do forever  

// Wait for finite interval of ∆t, which is equal to the time taken 
for a round to be completed 
wait(∆t); 
// Roundfanout computes the fanout based on the user specified 
infection pattern to be used in the current round.  
fanout= Roundfanout(current round); 
// The neighbor list is populated using the SELECTPEERS 
method.  
Neighbors[fanout] = SELECTPEERS(); 
// Message is transmitted to the neighbor list using the 
SENDMESSAGE method. 

       SENDMESSAGE(Neighbors[fanout]); 
// The view of the current node is sent to the neighbors list 
SENDSTATE(myview, Neighbors[fanout]); 
// Receive the view from the node who sent its view 
n_state = RECEIVESTATE(); 
//Merge the current view with the received view in a temporary 
list. 
my_state.UPDATE(n_state); 

(a) Active Thread 
do forever 
     n_state = RECEIVESTATE(); 
     SENDSTATE(n_state.sender); 
     my_state.UPDATE(n_state); 

(b) Passive Thread 
Figure 1: Round based Dynamic Fanout pseudo-code. 

Notations 
n   Number of peers in a peer-to-peer network 
r           A single epidemic round  

maxR        The maximum number of rounds 
∈  Probability of a message loss 
k  Number of peer crashes in a round 
τ   Probability of a peer crash during a single round. 

/k nτ =  

rβ  Probability of redundant messages during round r 

Ir   Number of susceptible peers that are infected by a 

message sent from an infective during round r. 
0 1I = , indicating at round 0 there is only one peer 

with a message. 
Sr   Number of peers that are not infected in the network 

after the end of round r. 0 1S n= −  and we expect the 
epidemic period to end with a high probability of 

max
0RS = . 

Fr  The fanout associated with every peer, i.e., a peer 

that receives a message during round r will transmit 
the message to 1rF + peers in round 1r + . 

In the following analysis, we assume that the composition of 
the network does not vary during the run, and we observe the 
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transmission of a single message from a peer. Each peer 
participates in the gossip process via synchronous rounds. 
During each round, each peer has an independent, uniformly 
distributed random view of known peers. Thus, peers have a 
global membership view, and epidemic targets are picked 
from this global view uniformly and randomly. We also 
assume two kinds of failures affecting our system. They are 
message loss and peer crash. Both failures are assumed to be 
stochastically independent. All nodes are assumed to have 
the same failure probabilities. The values of τ and ∈  are the 
same as the corresponding values in [5]. The recovery of 
crashed peers is not taken into consideration, nor Byzantine 
failures. We assume that redundant messages are generated 
every round. We estimate the redundant message factor βr 
from our simulations discussed in the next section. 

 Mathematical Analysis  

The main objective of our analysis is to measure the adaptive 
fanout value in every round and the number of messages 
generated after the epidemic protocol successfully 
terminates.  The first step of our analysis is to estimate the 
distribution of Sr and rβ over the maxR rounds. We plan to 

associate values for both distributions with an exponential 
rule. The constraints of the exponential rule 
are:

max0 1, 0RS n S= − = , and
max0 0, R threshβ β= = where thresh is 

the maximum probability of redundancy allowed in the 
network. After estimating Sr and rβ , the corresponding 

fanout values for each round r can be determined. 
Our analysis is based on the chain-binomial based recurrence 
relation [1,3], which has been derived from epidemic models 
and successfully applied to epidemic protocols in peer-to-
peer networks. From [5], the lower bound on the probability 
that a given susceptible peer is infected by a message is 
given by 

( )( )1 1
1

Fp
n

τ⎛ ⎞= −∈ −⎜ ⎟−⎝ ⎠
 

where F is the constant fanout size. In our approach, the 
fanout varies from round to round. We conjecture that the 
equation for probability of infection rp  during individual 
rounds remains the same. In the analysis provided in [5] 
redundant or duplicate messages were assumed to be 
discarded by peers, and their impact on the overall message 
overhead was not considered. After incorporating the 
variable fanout rF  and the probability of redundancy in the 
above equation, the probability that a given susceptible peer 
is infected by a given message in round r is given by:  

                       ( )( )1 1 (1 )
1

r
r r

Fp
n

τ β⎛ ⎞= −∈ − −⎜ ⎟−⎝ ⎠
                   (1) 

Let 1r rq p= −  be the probability that a given susceptible peer 
is not infected by a given gossip message in round r. Also the 
probability that a given susceptible peer is not affected by the 
presence of rI infected peers is rI

rq . On the same lines, we 
can derive that the number of peers which would not be 
infected by the message in the round r+1 is: 

                                  1
rI

r r rS S q+ =                                       (2) 
Substituting (1) into (2) we get  

             1 1 (1 )(1 )(1 )
1

r

r
r r r

I
FS S

n
τ β+

⎡ ⎤⎛ ⎞= − −∈ − −⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
         (3) 

After some algebraic manipulations, the fanout value for 
round r can be computed by  

             
1ln

1 1 exp
(1 )(1 )(1 )

r

r
r

r r

S
SnF

Iτ β

+
⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎡ ⎤− ⎝ ⎠⎢ ⎥⎜ ⎟= × −⎢ ⎥ ⎢ ⎥⎜ ⎟−∈ − −⎣ ⎦ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

               (4) 

To compute the value of Ir , we use the following simple 
relationship 

                        1 max , for 1r r rI S S r R−= − ≤ ≤                        (5) 

The fanout values computed for every round will ensure that 
that the message will reach every peer. Next we proceed to 
compute the lower bound on the message overhead of our 
adaptive fanout approach. The delay involved in the fanout 
calculation is only in the initial setup of the values for rS by 
the user. Once the user specifies the expected values for rS , 
there is no additional involvement of the user in the fanout 
calculation. 

Message Overhead 

In our approach, the number of messages generated during 
each round by a peer is not constant and is determined by the 
value of rF . At the beginning of round r, each peer transmits 

rF  new messages into the network, and rI  peers are 
participating in the message transmission process. So the 
number of new messages generated in round r is r rF I× . We 
have rn F>>  in practical peer-to-peer systems. Thus (3) 
becomes:  

                1 exp (1 )(1 )(1 )
1

r
r r r r

FS S I
n

τ β+
⎡ ⎤⎛ ⎞= × − −∈ − − ×⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

            (6) 

Applying logarithms and algebraic manipulations, we get an 
expression for r rF I×  as follows, 

                   
1

1 log
(1 )(1 )(1 )

r
r r

r r

n SF I
Sτ β +

⎡ ⎤ ⎛ ⎞−
× = × ⎜ ⎟⎢ ⎥−∈ − −⎣ ⎦ ⎝ ⎠

               (7) 

Summing up (7) for all permissible rounds, the total number 
of messages generated in the network is given as: 

         
max

max

1

11 log
(1 )(1 )(1 ) 0

r
R

r r

Rn SM
Srτ β +

−⎡ ⎤ ⎛ ⎞−
= × ∑ ⎜ ⎟⎢ ⎥−∈ − − =⎣ ⎦ ⎝ ⎠

           (8) 

After the summation process, (8) reduces to 

            
max

max

01 log
(1 )(1 )(1 )R

r R

n SM
Sτ β

⎛ ⎞⎡ ⎤−
= × ⎜ ⎟⎢ ⎥ ⎜ ⎟−∈ − −⎣ ⎦ ⎝ ⎠

             (9) 

Eq. (9) can be approximated as 

               
max

1 log( 1)
(1 )(1 )(1 )R

r

nM n
τ β

⎡ ⎤−
= × −⎢ ⎥−∈ − −⎣ ⎦

         (10) 
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C2 C1 

C4 
C5 

Thus, the message overhead is bound by ( log )O n n , which is 
similar to (the same as) other constant fanout based epidemic 
protocols [3, 14].  
 
4. CLUSTER BASED DYNAMIC FANOUT 
 
In this section, we present the Cluster-Based dynamic fanout 
based epidemic protocol, followed by a detailed 
mathematical analysis. We adopted a hierarchical-
membership approach using Newscast [11]. The nodes do 
not perform message filtering which means that redundant 
and duplicate messages are processed during every epidemic 
instance. In the Round-Base dynamic fanout protocol, nodes 
were connected by a flat membership where the local 
subscription list is composed of nodes located all over the 
network. The fanout for a given node changes from round to 
round, but remains constant within a round. In our Cluster-
Base dynamic fanout protocol, we adopt a cluster model 
where nodes are clustered according to a geographical 
proximity criterion. The pseudo-code for the information 
dissemination process in this approach is similar to Fig. 1.  
The only difference is the fanout values and the view list for 
each node. 
In the Cluster-Based dynamic fanout approach, the 
probability p that a given susceptible peer is infected by a 
message follows a frequency distribution during every round. 
There are two ways in which p can be varied: vary p among 
each node in the network or vary p between clusters. We 
chose to vary p between the clusters. The reasoning for this 
choice is as follows. Our network topology consists of 
heterogeneous clusters, which may include workstation 
clusters composed of machines with different processor 
architectures, data formats, and operating system 
environments. It is arguable that the probability of infection 
should vary between the nodes within a cluster too, but such 
a level of detail may make the model intractable. In the 
following analysis, we present an agreement between our 
hypothesis and observed data. 

The network topology is shown in Fig. 2. The figure shows a 
two level hierarchy for ease of analysis, and can be easily 
extended to a hierarchy of more levels. The figure shows two 
types of nodes: Empty circles represent internal nodes, while 
solid circles represent external nodes. Internal nodes have a 
local subscription list composed exclusively of nodes 
belonging to the same cluster; external nodes are provided 
with remote subscription list consisting of nodes in other 
clusters. The presence of these two types of nodes in our 
network topology leads to two kinds of fanout:  intra-cluster 
fanout and inter-cluster fanout. The intra-cluster fanout 
denotes the constant number of links each internal node has 
with member nodes in the same cluster. In our topology, this 
fanout remains constant within each cluster. But the inter-
cluster fanouts vary between any given pair of clusters. In 
Fig.2, clusters C1 and C2 have a fanout of 2, while clusters 
C3, C4, and C5 have a fanout of 3. The inter-cluster fanout 
denotes the number of remote links each external node must 

maintain with other external nodes. In our topology, this 
fanout is a constant of 1. 

 
 
      
 
 
 
 
 
 

 

 
 
 
 
 
 
Analytical Model 

The basis for our analytical model is the variation of the 
inter-cluster fanout. To model this variation we focus on 
varying the value of p. There are different ways to model the 
variation of p. We choose to adopt a simple way to take 
account of variation of p, by introducing a suitable 
distribution for p and then go through the process of 
estimating the parameters in the distribution and testing 
goodness-of-fit. We assume p is a random variable following 
a beta distribution. We prefer to use a beta distribution 
because an exhaustive analysis would lead to a very complex 
Markov Chain with an impractical size. Beta distribution is 
used to model events where the random variable varies 
between two extremes. In our analysis, p varies between zero 
and total neighbor size. 

As our analyses are based on the chain-binomial model [5], 
we define the term “chain” before we proceed with our 
analysis. At each stage of an epidemic, there are certain 
numbers of infective and susceptible nodes, with the latter 
yielding new infective nodes at next stage distributed in a 
binomial series. Thus, we have a chain of binomial 
distributions. An instance of a chain in a cluster is denoted 
by: 

max
max( , ) {( , ) : 0,1,..., }[0, ] rS I S I r RR ≡ = . 

For example, if all the nodes in a 5-node cluster have been 
infected in 3 rounds then a possible chain sequence would be 

[0,3] 0 1 2 3(4,1) {(4,1) ,(2,3) ,(1,4) ,(0,5) }≡ . 

The probability of occurrence of a chain in a cluster can be 
expressed as follows: 

                       
max[0, ]( ) (( , ) | ).RP p P S I p=                         (11) 

Since we assume that p varies between clusters only, we 
compute the required expectations by averaging the 

Figure 2: Cluster membership depicting intra-cluster 
fanout and inter-cluster fanout. 
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probability of frequencies of every kind of chain ( )P p over 
all possible values of p in the interval (0, 1), which gives the 
following, 

                                  
1

( ) ( ) .
0

P p f p dp
p
∫
=

                             (12) 

The density function is given by: 

                         
1 1(1 )( ) ,0 1,

( , )

a bp pf p p
B a b

− −−
= ≤ ≤               (13) 

where ( , )B a b is the beta function, 0,  and 0.a b> >  

The probability ( )P p  is derived from the chain-binomial 
model as:  

       ( )
1( ) ( | ) (1 ) , .i j i i n j

r r

n i
P p P S j S i q q j i

j i
− −

+

−⎛ ⎞
= = = = − ≥⎜ ⎟−⎝ ⎠

         (14) 

In (14), 1q p= − represents the probability that a susceptible 
peer is not infected by a given message.  By integrating over 
all values of p where p has the beta density in (13), the 
expectations can be shown as functions of parameters a, b, i 
,j. The probability ( )P p of this chain equals 

max
1 1

max

1max
1 1

max

1

1

1 1

1

( ) (1 ) ( )
r=1

( )
         = (1 )

r=1

         = ( 1)
0r=1

r r r r r

R

r r
r r r r

r

r n s

r r

r

r r

rr r ms

r r

R n s s s s sP p q q
s s

s n sR n s s s sq q
s s

n sR n s n s m q
s s mm

+ +

+
+ =

−

+

+

+ +

+

−⎛ ⎞ −= −∏ ⎜ ⎟−⎝ ⎠

−∑−⎡ ⎤⎛ ⎞ −−∏⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

−− −⎡ ⎛ ⎞ ⎛ ⎞
−∑∏⎢ ⎜ ⎟ ⎜ ⎟− = ⎝ ⎠⎝ ⎠⎣

max

1
1

( )
.

R

r r
r

s n s
q

+
=

−∑⎤
⎥
⎦

(15) 

 
Combining (13) and (15), and integrating ( )P p over all 
values of p, we have 

1 1

1

1 1

1

( ) 1 1

1

1

1 (1 )[ ( )] (1 ) ( )
( , )0

1 (1 )               = ( 1)
( , )0 0

               =

r r r r r

r rr

a b
r

r r

s k s b a
r r k

r r

r

r r

n s p ps s s s n sE P p q q dp
s s B a b

n sn s n s p p dp
s s k B a bk
n s n

s s

+ +

+

− −

+

+ + − −

+

+

−⎛ ⎞ −− −= −∫ ⎜ ⎟−⎝ ⎠
−− −⎛ ⎞ ⎛ ⎞ −

−∑ ∫⎜ ⎟ ⎜ ⎟− = ⎝ ⎠⎝ ⎠
− −⎛ ⎞

⎜ ⎟−⎝ ⎠

1 ( [ ] , )( 1)
( , )0

r r k r r
n s s B s k s b a

k B a bk

+− ⎛ ⎞ + +
−∑ ⎜ ⎟

= ⎝ ⎠

 (16) 

Equation (16) provides a mechanism to measure the expected 
value of the probability of a particular chain. The next step is 
to estimate the parameter values of a, and b. We estimate 
these values based on the data collected from simulation 
experiments. For example, in one sample simulation 
scenario, we setup a network topology of 100 clusters, each 
with a membership of 5 nodes.  The initial sequence in each 
cluster would be comprised of the chain 0 4S =  and 0 1I = . In 
our example, the expected number of clusters with the chain 
(1, 3, 0) equals 

            

1 1
4 3

1 (1 )1 0 0 4 (1 )
( , )0

( 3, 4 )4 0 0[ ]
( , )

a bp pp p d p
B a b

B a b
B a b

− −−
−∫

+ +
=

         (17) 

Similar integrations for other, more probable chains based on 
the simulation data will be carried out, and the estimation of 

the parameters a and b will be done by applying maximum 
likelihood methods. 
 
5. SIMULATIONS AND ANALYSIS 

In this section, we compare the analytical results obtained for 
both approaches with simulation results. For the round based 
dynamic fanout approach, our results highlight the impact on 
infection pattern and message overhead in the presence of 
variable fanouts from round to round. For the cluster based 
dynamic fanout approach, our results show the relation 
between the infection pattern of clusters and the beta-
distribution characterized probability of infection model. We 
conducted the simulations using peersim, an open source 
peer-to-peer simulator developed at the University of 
Bologna [9,16]. 

5.1 Round Based Dynamic Fanout  

In our simulations, we have used Newscast as the underlying 
overlay network membership protocol [11]. The reason for 
this choice is twofold: First, we want to show empirical 
results in a realistic overlay network that can actually be built 
in a decentralized way. Second, Newscast is known to be 
robust and capable of maintaining a sufficiently random 
network in failure scenarios. In Fig. 1a, Newscast has been 
used to implement the SELECTPEERS function. We have 
performed our simulations on network sizes ranging from 
500 nodes to 2,500 nodes. The size of the local neighbor sets 
at each peer node, which are maintained and exchanged by 
the NEWSCAST protocol, is set to 1% of the overall 
network size. This value is large enough such that a given 
message is able to reach all nodes in the network. For our 
approach to be effective, we rely on the user for the infection 
pattern. In our simulations, we have tackled the issue of 
designing good user inputs by adopting an exponential 
distribution rule. Using this rule, the distribution of the non-
infection pattern rS and the redundancy probability rβ was 
computed. In computing the distribution for rβ , the thresh 
value is set to 0.3. The values for τ and ∈ are set to 0.05 and 
0.01, respectively. We have conducted 20 simulation runs. 
Using equation (4), the fanout values were computed for 
each round. To incorporate fractional values in our 
simulation runs, we converted the real number to a lower or 
higher integer value randomly in different runs such that the 
average value is equal to the real number. Table 1 presents 
the analytical and simulation values for the non-infection 
pattern rS with network sizes of 1,000 and 2,000 nodes. As is 
evident from Table 1, the option of variable fanouts from 
round to round allows users to control the infection pattern. 
In addition, the user can specify the total number of rounds 
for a specific infection pattern, and the fanouts are computed 
accordingly.  Though the rS values for individual runs 
deviated from their corresponding analytical values, the 
average over 20 runs converged to the theoretical values. 
Table 1 summarizes the average values for rS over a set of 
runs and the standard deviation of the observed simulation 
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results. The simulation values for rS do confirm to our 
analytical model. 

 
Table 2 presents the computed dynamic fanout values for 
network sizes of 1,000 and 2,000 nodes. The fanouts are 
computed for each round. Table 3 highlights the message 
overhead in the round-based dynamic fanout approach under 
different network sizes. The third column shows the 
cumulative message overhead at the end of all rounds 
generated by the simulations. Column 4 shows the theoretical 
values for the message overhead computed based on the 
analytical results from Eq. (10).  We observed that the 
overall message overhead is independent of the variations in 
fanout but is dependent on the percentage of redundant 
messages in the network. We observe from Table 3 that as 
the number of nodes increases, the message overhead 
deviates from the analytical values. It is interesting to notice 
that the ratio of simulation message overhead to analysis one 
is almost constant (1.18) for different number of nodes. This 
deviation is largely due to the fact that as network size gets 
larger, the percentage of redundancy messages also 
increases. 

Table 1. Round based dynamic fanout for 1,000 and 
2,000 nodes 

 
Roun

d 

1000 2000 

Sr 
Analysi

s  

Sr (avg) 
Simulation 

Std 
Dev

Sr 
Analysi

s 

Sr (avg.)

Simulation

Std 
Dev

1 999  999  0 1999 1999 0
2 994 992.4  0.7 1994 1991.5 0.7
3 961 959.3  0.5 1961 1959.4 0.5
4 771 770.5  0.7 1728 1725.3 0.7
5 210 209.5  2.6 969 965.5 2.6
6 1 0.5  0 52 50.3 0
7     1 0.5

 
Table 2. Round based dynamic fanout for different 
network sizes 

Rounds Nodes 
500 1000 1500 2000 2500 

1 - - - - - 
2 5 5 5 5 3 
3 4.089 4.46 4.44 4.27 3.5 
4 4.47 5.79 13.68 10.848 3.785 
5 7.76 6.32 2.33 3.08 7.33 
6 10.86 8.37 4.94 5.56 4.19 
7 - - - - 3.4016 
8 - - - - 4.99 
9 - - - - 15.875 

 
5.2 Cluster Based Dynamic Fanout 

For this approach, we have run experiments on two 
scenarios. In the first scenario, our network topology 
comprised of 100 clusters, with each cluster consisting of 
four nodes. In the second scenario, the total number of 
clusters remained the same, but the number of nodes in each 
cluster was increased to five. As the infection probability 
varies for each cluster, we observe the infection pattern over 
rounds. The infection pattern for each cluster is represented 
as a binomial chain. 
Table 3. Message Overhead in the Round based Dynamic 
Fanout approach 

Number 
of 

Nodes 

Maximum 
Rounds 

Message 
Overhead 

(simulations) 

Message 
Overhead 
(Analysis) 

1,000 6 3540 3000 
1,500 7 5624 4764 
2,000 7 7795 6602 
2,500 9 10031 8494 

 

For example, in the first scenario, a cluster with four nodes 
where one node is infected ( 0 1I = ) and three nodes are not 

yet infected ( 0 3S = ), we recorded the number of new 
infected nodes { }rI at 0,1, 2, ...r =  rounds as the chain 1-1-2, 
where all nodes are eventually infected.  In Table 4, the first 
column shows all the possible infection pattern chains for a 
cluster of size four. The chain-binomial probabilities for all 
these chains 0 1{ 1, ,..., }kI I I= are given in the second column, 
where n is the total number of clusters. Our goal is to find 
out the total number of clusters which have the same 
infection pattern. Each entry in column two shows the total 
number of clusters for the corresponding chain in the first 
column. We need estimates of p and z to find out the total 
number of clusters for each infection pattern chain. The third 
column shows the expected probabilities of the chain-
binomial model. The expected probabilities are presented by 
simpler notations as follows: 

   

1

1

( )
/( )

( ) (1 ) ( )
0

( ) ( )
0

( ) ( )
0

q

p

z a b
p a a b

n
z n iz z n

i
n

z n q iz
i

n
z n p iz

i

−= +
= +

= + =∏
=

= +∏
=

= +∏
=

                       (19)  

 
Table 4. Chain-Binomial Probabilities for cluster size of 4 

Infection 
Pattern { }rI  

r = 0  1 2  3 

Probabilitie
s 

Expected Values of 
Probabilities 

1-1-1-1 3 36np q  6 (2) (2) / (5)q pz z z  

1-1-2 3 23np q  3 (1) (2) / (4)q pz z z  
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1-2-1 33np q  3 (0) (2) / (3)q pz z z  

1-3 3np  (2) / (2)pz z  

In Table 5, the first column presents the binomial chains, and 
the second column contains the total number of clusters from 
simulation results. The third column contains the total 
number of clusters which need to be computed based on the 
estimates of p and z. To find the estimates of p and z, we 
employ a log-likelihood function. The log-likelihood 
function is constructed based on the expected probabilities in 
the third column of Table 4 and the simulation-generated 
total number of clusters in the second column of Table 5. 
The log-likelihood function  Log L  is given as follows,  

 
5*log(6 (2) (2)/ (5)) 6*log(3 (1) (2)/ (4))

             19*log(3 (0) (2)/ (3)) 70*log( (2)/ (2))       
q p q p

q p p

LogL z z z z z z

z z z z z

= + +

+
(20) 

Substituting the values of z, qz , and pz from (19), we get  

30 log 11log( ) 100 log
            + 100 log( )  100 log( 2 ) 100 log(1 )
          100 log(1 2 ) 20 log(1 3 ) 11log(1 4 )
           11log(1 5 )

LogL C q q z p
p z p z z

z z z
z

= + + + +
+ + + − +

− + − + − +
− +

 (21) 

where C is a constant. 
Using MATLAB, the minimization of LogL  given in (21) is 
carried out. The value of C has no effect on the minimization 
process since it is a constant. The maximum likelihood 
estimates of p and z are found to be  

0.822 0.028, 0.521 0.178p z
∧ ∧
= ± = ±  

The corresponding estimates of a and b were obtained as 

1.29, 0.3a b
∧ ∧
= =  

Table 5. Simulation and Analytical Values of infected 
clusters for cluster size of 4 

Infection 
Pattern { }rI  

r = 0 1  2 3 

Observed 
number of 

clusters 
(Simulation) 

Fitted values 
from the 
analytical 

model 
1-1-1-1 5 3.1 
1-1-2 6 4.1 
1-2-1 19 14.8 
1-3 70 67.3 

 
Since b  is less than unity, the beta-distribution is J-shaped 
with an infinite ordinate at p=1. Substituting the values of p, 
q, and z into the third column of Table 4, the fitted values for 
our chain-binomial model with variable p are calculated as 
seen in the third column of Table 5. The fitted values are the 
total number of clusters for the corresponding infection 
pattern chain given in the first column. 
In the second scenario, we observe the scalability of the 
cluster based dynamic fanout scheme.  We increase the 
cluster size to 5, which increases the total number of nodes in 

the system to 500. Similar to Table 4, the first column of 
Table 6 shows all the possible infection pattern chains for a 
cluster of size 5. The chain-binomial probabilities for all 
these chains are given in the second column of Table 6. The 
third column shows the expected probabilities of the chain-
binomial model. 
 
Table 6. Chain-binomial Probabilities for cluster size of 5 

Infection 
Pattern { }rI  

r = 0 1  2 3  4 

Expected 
number of 
Clusters 

(analysis) 

 
Expected Values of 

Probabilities 

1-1-1-1-1 6 424nq p  24 (5) (3) / (9)q pz z z

1-1-1-2 5 412nq p  12 (4) (3) / (8)z z zq p  

1-1-2-1 4 3 212 (1nq p q−
 

12 (3) (3)(1 12 ) / (8)q pz z q z z+ +

1-1-3 3 44q p  4 (2) (3) / (6)q pz z z  

1-2-1-1 4 4 212 (1nq p q−
 

12 (3) (3)(1 12 ) / (8)q pz z q z z+ +

1-2-2 2 2 2 26 (1 )q p q−
 

2

2

6 (1) (3)[76 (17 19 )

(1 ) ]/ (7)
q pz z z q z

q z

+ +

+ +
 

1-3-1 3 34 (1 )nqp q−
 

2

2

4 (0) (3)[38 (12 9 )

(1 ) ]/ (7)
q pz z z q z

q z

+ + +

+
 

1-4 4p  (3) / (3)pz z

 
From the third column of Table 6 and the simulation data in 
second column of Table 7, the log-likelihood function is 
given as follows: 

 52log 11log( ) 5log( 2 )
               4log( 3 ) 3log( 4 ) log( 5 )
                 +100log 100log( ) 100log( 2 )
                 100log( 3 ) 1log(1 12 )

                  +1log

Log L C q q z q z
q z q z q z

p p z p z
p z q z

= + + + + +
+ + + + + +

+ + + +
+ + + + +

2 2(76 (17 19 ) (1 ) )
2 2                  +41log(38 (12 9 ) (1 ) )

                  100log(1 ) 100log(1 2 ) 100log(1 3 )
                 52log(1 4 ) 52log(1 5 ) 52log(1 6 )
                  -51l

z q z q

z q z q
z z z
z z z

+ + + +

+ + + +
− + − + − +
− + − + − +

og(1 7 ) 4log(1 8 ) log(1 9 )z z z+ − + − +

    (22)                   

where C is a constant. 

Using MATLAB, the minimization of LogL was carried out. 
The maximum likelihood estimates of p and z are found to be 

0.8444 0.0113, 0.6122 0.0221p z
∧ ∧
= ± = ±  

The corresponding estimates of a  and b  were obtained as 

1.377, 0.253a b
∧ ∧
= =  
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The shape of the beta-distribution is identical to the one 

obtained with cluster size 4, as the value of b
∧

 is less than 1. 

 
Table 7. Simulation and Analytical Values of the infected 

clusters for cluster size of 5 
Infection 

Pattern { }ri  

r= 0  1 2  3 4 

Observed number of 
clusters (Simulation) 

Fitted values 
from the 

analytical model 

1-1-1-1-1 1 0 
1-1-1-2 1 0 
1-1-2-1 1 1.5 
1-1-3 1 0.65 

1-2-1-1 1 1.5 
1-2-2 6 10.3 
1-3-1 41 37.72 
1-4 48 51.24 

 
 
6. CONCLUSIONS 
 
We have described two protocols for information 
dissemination in large-scale communication systems by 
using dynamic epidemic protocols. For the Round-Based 
dynamic fanout protocol, the number of infected processes 
per round is based on the frequency distribution provided by 
users. This helps users quantify fanout to control the 
epidemic infection and allows users to fine tune this 
parameter. For the Cluster-Based dynamic fanout protocol, 
the fanout is not constant among the various clusters, unlike 
the round-based dynamic fanout approach. We have 
observed the infection pattern among the various clusters 
during every round. Simulation results for cluster size four 
and five have proved that the infection pattern closely 
follows a beta distribution. 

Following are the issues that need further investigation: i) 
For the Round-Based dynamic fanout approach, the design of 
a good frequency distribution of infected nodes provided by 
the system user needs to be carefully examined. ii) The 
Cluster-Based dynamic fanout approach needs to be 
implemented on a large cluster size. We aim to address these 
issues in our future work. 
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